Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Neutrino stability and cosmological helium production

Abstract

THERE is at least one lepton in addition to the electron and muon and this might have an associated neutrino. If such a neutrino is stable, its existence implies that the amount of helium produced in the early stages of the expanding Universe is higher than is generally believed. If there are several heavy leptons with stable neutrinos, the helium production may become so high that it is in clear contradiction with observations. It is pointed out here that, even if these neutrinos exist, they may not be stable and that there is no clear evidence that even the muon neutrino is stable. If the additional neutrinos are unstable with a short enough half life, they do not affect the cosmological helium production and it is reduced if the muon neutrino is unstable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Penzias, A. A. & Wilson, R. W. Astrophys. J. 142, 419–421 (1965).

    Article  ADS  Google Scholar 

  2. Hoyle, F. & Tayler, R. J. Nature 203, 1103–1110 (1964).

    Article  ADS  Google Scholar 

  3. Peebles, P. J. E. Physical Cosmology (Princeton University Press, 1971).

    Google Scholar 

  4. Hundhausen, A. J. Coronal Expansion and Solar Wind (Springer, Berlin 1972).

    Book  Google Scholar 

  5. Perl, M. L. et al. Phys. Rev. Lett. 35, 1489–1492 (1975).

    Article  ADS  CAS  Google Scholar 

  6. Perl, M. L. et al. Phys. Lett. 63B, 466–470 (1976).

    Article  Google Scholar 

  7. Ali, A. & Yang, T. C. Phys. Rev. D14, 3052–3058 (1976).

    Article  ADS  CAS  Google Scholar 

  8. Miller, D. J. Nature 272, 205 (1978).

    Article  ADS  Google Scholar 

  9. Greenstein, G. S. Astrophys. Space Sci. 155–165 (1968).

  10. Tayler, R. J. Nature 217, 433 (1968).

    Article  ADS  CAS  Google Scholar 

  11. Wagoner, R. V., Fowler, W. A. & Hoyle, F. Astrophys. J. 148, 3–49 (1967).

    Article  ADS  CAS  Google Scholar 

  12. Hawking, S. W. & Tayler, R. J. Nature 209, 1278–1279 (1966).

    Article  ADS  Google Scholar 

  13. Thorne, K. S. Astrophys. J. 148, 51–68 (1967).

    Article  ADS  Google Scholar 

  14. Feynman, R. P. & Gell-Mann, M. Phys. Rev. 109, 193–198 (1958).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. Weinberg, S. Phys. Rev. Lett. 19, 1264–1266 (1967).

    Article  ADS  Google Scholar 

  16. Salam, A. in Elementary Particle Physics (ed. N. Svartholm) (Almquist and Wiksells, Stockholm, 1968).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

TAYLER, R. Neutrino stability and cosmological helium production. Nature 274, 232–234 (1978). https://doi.org/10.1038/274232a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/274232a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing