Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Contribution of bedrock nitrogen to high nitrate concentrations in stream water

Abstract

Concentrations of nitrate in stream water throughout the world are reported to be elevated relative to natural background levels. This enrichment is commonly attributed to anthropogenic activities such as atmospheric emissions1, livestock feeding2, agricultural runoff3,4, timber harvesting practices5 and domestic/industrial effluent discharge4,6. Here we show that bedrock containing appreciable concentrations of fixed nitrogen contribute a surprisingly large amount of nitrate to surface waters in certain California watersheds,o an extent that even small areas of these rocks have a profound influence on water quality. As 75% of the rocks now exposed at the Earth's surface are sedimentary in origin7, and as these rocks contain about 20% of the global nitrogen inventory8, ‘geological’ nitrogen may be a large and hitherto unappreciated source of nitrate to surface waters. Such a natural nitrate source may be especially significant given that nitrate contamination at very low levels can contribute to surface water eutrophication9, may cause infant methaemoglobinaemia (‘blue baby’ syndrome)6 and has been implicated in certain cancers6. In addition, geological nitrogen may be a source of the ‘missing’ nitrogen noted in several biogeochemical studies of ecosystem nitrogen budgets1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Surficial geology of the Mokelumne River watershed.
Figure 2: Streamwater nitrate concentrations.
Figure 3: Stream discharge and trate concentrations during storm events.
Figure 4: Mineral nitrogen (NO3 + NH4+) concentrations for C horizon soils.

Similar content being viewed by others

References

  1. Galloway, J. N., Schlesinger, W. H., Levy, H., Michaels, A. & Schnoor, J. L. Nitrogen fixation: anthropogenic enhancement–environmental response. Glob. Biogeochem. Cycles 9, 235–252 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Power, J. F. & Papendick, R. I. in Fertilizer Technology and Use (ed. Engelstad, O. P.) 503–520 (Soil Sci. Soc. Am., Madison, Wisconsin, (1985).

    Google Scholar 

  3. Spalding, R. F. & Exner, M. E. Occurrence of nitrate in groundwater—a review. J. Environ. Qual. 22, 393–402 (1993).

    Article  Google Scholar 

  4. Keeney, D. R. in CRC Critical Reviews in Environmental Control (ed. Straub, C. P.) 257–304 (CRC, Boca Raton, Florida, (1986)).

    Google Scholar 

  5. Likens, G. E., Bormann, F. H., Johnson, N. M., Fisher, D. W. & Pierce, R. S. Effects of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook watershed-ecosystem. Ecol. Monogr. 40, 23–47 (1970).

    Article  Google Scholar 

  6. Bouchard, D. C., Williams, M. K. & Surampalli, R. Y. Nitrate contamination of groundwater: sources and potential health effects. J. Am. Wat. Works Assoc. 84, 85–90 (1992).

    Article  CAS  Google Scholar 

  7. Blatt, H. & Jones, R. L. Proportions of exposed igneous, metamorphic, and sedimentary rocks. Geol. Soc. Am. Bull. 86, 1085–1088 (1975).

    Article  ADS  Google Scholar 

  8. Schlesinger, W. H. Biogeochemistry—An Analysis of Global Change (Academic, San Diego, California, (1997)).

    Google Scholar 

  9. Goldman, C. R. Primary productivity, nutrients, and transparency during the early onset of eutrophication in ultra-oligotrophic Lake Tahoe, California–Nevada. Limnol. Oceanogr. 33, 1321–1333 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Wagner, D. L., Jennings, C. W., Bedrossian, T. L. & Bortugno, E. J. Geologic Map of the Sacramento Quadrangle, California (Calif. Div. Geology, Sacramento, California, (1981)).

    Google Scholar 

  11. Clark, L. D. Stratigraphy and structure of part of the western Sierra Nevada metamorphic belt, California. Prof. Pap. US Geol. Surv. 410, (1964)).

  12. Duffield, W. A. & Sharp, R. V. Geology of the Sierra Foothills melange and adjacent areas, Amador County, California. Prof. Pap US Geol. Surv. 827, (1975)).

  13. Schroeder, P. A. & Ingall, E. D. Amethod for the determination of nitrogen in clays, with application to the burial diagenesis of shales. J. Sedim. Res. 64, 694–697 (1994).

    Article  Google Scholar 

  14. Douglas, L. A. in Minerals in Soil Environments2nd edn (eds Dixon, J. B. & Weed, S. B.) 635–674 (Soil Sci. Soc. Am., Madison, Wisconsin, (1989)).

    Google Scholar 

  15. Kulandaiswamy, V. C. & Seetharaman, S. Anote on Barnes' method of hydrograph separation. J. Hydrol. 9, 222–229 (1969).

    Article  ADS  Google Scholar 

  16. Caissie, D., Pollock, T. L. & Conjak, R. A. Variation in stream water chemistry and hydrograph separation in a small drainage basin. J. Hydrol. 178, 137–157 (1996).

    Article  ADS  Google Scholar 

  17. Dahlgren, R. A. Comparison of soil solution extraction procedures: effect on solute chemistry. Commun. Soil Sci. Plant Anal. 24, 1783–1794 (1993).

    Article  CAS  Google Scholar 

  18. Bundy, L. G. & Meisinger, J. J. in Methods of Soil AnalysisPart 2, Microbiological and Biochemical Properties2nd edn (eds Page, A. L., Miller, R. H. & Kenney, D. R.) 951–984 (Soil Sci. Soc. Am., Madison, Wisconsin, (1982)).

    Google Scholar 

  19. Parfitt, R. L., Percival, H., Dahlgren, R. A. & Hill, L. F. Soil and soil solution chemistry under pasture and radiata pine in New Zealand. Plant Soil 191, 279–290 (1997).

    Article  CAS  Google Scholar 

  20. Aber, J. D., Nadelhoffer, K. J., Steudler, P. & Melillo, J. M. Nitrogen saturation in northern forest ecosystems. BioScience 39, 378–386 (1989).

    Article  Google Scholar 

  21. Dahlgren, R. A., Singer, M. J. & Huang, X. Oak tree and grazing impacts on soil properties and nutrients in a California oak woodland. Biogeochemistry 39, 45–64 (1997).

    Article  CAS  Google Scholar 

  22. Pavlik, B. M., Muick, P. C., Johnson, S. & Popper, M. Oaks of California (Cachuma, Los Olivos, California, (1991)).

    Google Scholar 

  23. Boyd, S. R., Hall, A. & Pillinger, C. T. The measurement of delta 15N in crustal rocks by static vacuum mass spectrometry: application to the origin of the ammonium in the Cornubian batholith, southwest England. Geochim. Cosmochim. Acta 57, 1339–1347 (1993).

    Article  ADS  CAS  Google Scholar 

  24. Duit, W., Jansen, J. B. H., van Breemen, A. & Bos, A. Ammonium micas in metamorphic rocks as exemplified by Dome de l'Agout (France). Am. J. Sci. 286, 702–732 (1986).

    Article  ADS  CAS  Google Scholar 

  25. Eugster, H. P. & Munoz, J. Ammonium micas: possible sources of atmospheric ammonia and nitrogen. Science 151, 683–686 (1965).

    Article  ADS  Google Scholar 

  26. Hall, A., Pereira, M. D. & Bea, F. The abundance of ammonium in the granites of central Spain, and the behaviour of the ammonium ion during anatexis and fractional crystallization. Mineral. Petrol. 56, 105–123 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Kawano, M. & Tomita, K. Mineralogical properties of interstratified ammonium-bearing mica/smectites from Aira, Kagoshima Prefecture, Japan. Mineral. J. 15, 19–31 (1990).

    Article  ADS  CAS  Google Scholar 

  28. Krohn, M. D., Kendall, C., Evans, J. R. & Fries, T. L. Relations of ammonium minerals at several hydrothermal systems in the western U.S. J. Volcanol. Geotherm. Res. 56, 401–413 (1993).

    Article  ADS  CAS  Google Scholar 

  29. Meyer, F. M. & Ridgway, J. Ammonium in Witwatersrand reefs: a possible indicator of metamorphic fluid flow. S. Afr. J. Geol. 1994, 343–347 (1991).

    Google Scholar 

  30. Ridgway, J., Appleton, J. D. & Levinson, A. A. Ammonium geochemistry in mineral exploration—comparison of results from the American cordilleras and the southwest Pacific. Appl. Geochem. 5, 475–489 (1990).

    Article  CAS  Google Scholar 

  31. Stevenson, F. J. Chemical state of the nitrogen in rocks. Geochim. Cosmochim. Acta 26, 797–809 (1962).

    Article  ADS  CAS  Google Scholar 

  32. SYSTAT v. 6.0 for Windows(SPSS Inc., Chicago, Illinois, (1996)).

Download references

Acknowledgements

We thank Georgia Pacific for helicopter access to high-elevation watersheds during the winter; East Bay Municipal Utilities District, Georgia Pacific, and the US Forest Service for the loan of streamwater autosamplers; J. Munn, B. McGurk, L. Costock, J. Pierner, B. Smith and the Mokelumne River Water Quality Monitoring Committee for logistical support; and J. Jimenez, D. Levine, R. Northup, G. Pauly, J. Shaw, E. Suzuki and D. Walsh for assistance with field work and analysis. This work was supported by the California Dept of Forestry and Fire Protection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Dahlgren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holloway, J., Dahlgren, R., Hansen, B. et al. Contribution of bedrock nitrogen to high nitrate concentrations in stream water. Nature 395, 785–788 (1998). https://doi.org/10.1038/27410

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/27410

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing