Rapid transfer of non-histone chromosomal proteins to the nucleus of living cells


CHROMATIN of eukaryotic cells is composed of DNA, histones and non-histone chromosomal proteins. Histones are generally thought to be nonspecific gene repressers and components maintaining the structure of chromatin. On the other hand, recent reports suggest that non-histone chromosomal proteins activate regions of repressed DNA by their association with histones1. This idea was mainly derived from studies at the transciptional level with reconstituted chromatin in vitro2. The ultimate function of biological substances in cells might be determined by injecting these substances directly into living cells. Accordingly, we recently developed a method for introducing macromolecules into culture cells using erythrocyte ghosts (ghost fusion method)3; the method is based on virus-induced cell fusion of resealed erythrocyte ghosts containing the substance with recipient cells. To obtain clues to the function of non-histone chromosomal proteins inside cells, we have now used this method to introduce iodine-labelled non-histone chromosomal proteins from rat liver into mouse cells and then studied distribution of these proteins in the recipient cells. We found that they were rapidly transferred to the cell nuclei.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Stein, G. S., Stein, J. L. & Kleinsmith, L. J. Scient. Am. 4, 47–57 (1975).

    Google Scholar 

  2. 2

    Gilmour, R. S. in Acidic Proteins of the Nucleus (eds Cameron, I. L. & Jeter, J. R., Jr) 297–317 (Academic, London, 1974).

    Google Scholar 

  3. 3

    Furusawa, M., Yamaizumi, M., Nishimura, T., Uchida, T. & Okada, Y. Meth. Cell Biol. 14, 73–80 (1976).

    CAS  Article  Google Scholar 

  4. 4

    Douvas, A. S., Harrington, C. A. & Bonner, J. Proc. natn. Acad. Sci. U.S.A. 72, 3893–3897 (1975).

    ADS  Article  Google Scholar 

  5. 6

    Capecchi, M. R., Capecchi, N. E., Hughes, S. H. & Wahl, G. M. Proc. natn. Acad. Sci. U.S.A. 71, 4732–4736 (1974).

    ADS  CAS  Article  Google Scholar 

  6. 7

    Bonner, W. M. J. Cell Biol. 64, 421–437 (1975).

    CAS  Article  Google Scholar 

  7. 8

    Gurdon, J. B. Nature 248, 772–776 (1974).

    ADS  CAS  Article  Google Scholar 

  8. 9

    Gurdon, J. B., Partington, G. A. & De Robertis, E. M. J. Embryol. exp. Morph. 36, 541–553 (1976).

    CAS  PubMed  Google Scholar 

  9. 10

    Weintraub, H. Nature 240, 449–453 (1972).

    ADS  CAS  Article  Google Scholar 

  10. 11

    Steplewski, Z., Knowles, B. B. & Koprowski, H. Proc. natn. Acad. Sci. U.S.A. 59, 769–776 (1968).

    ADS  CAS  Article  Google Scholar 

  11. 12

    Davidson, R. L. in Somatic Cell Hybridization (eds Davidson, R. L. & de la Cruz, F. F.) 131–150 (Raven, New York, 1974).

    Google Scholar 

  12. 13

    van den Broek, H. W. J., Nooden, L. D., Sevall, J. S. & Bonner, J. Biochemistry 12, 229–236 (1973).

    CAS  Article  Google Scholar 

  13. 14

    Stein, G. S. et al. Biochemistry 14, 1859–1866 (1975).

    CAS  Article  Google Scholar 

  14. 15

    Greenwood, F. C., Hunter, W. M. & Glover, J. S. Biochem. J. 89, 114–123 (1963).

    CAS  Article  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

YAMAIZUMI, M., UCHIDA, T., OKADA, Y. et al. Rapid transfer of non-histone chromosomal proteins to the nucleus of living cells. Nature 273, 782–784 (1978). https://doi.org/10.1038/273782a0

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing