Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Palaeogeotherms: implications of disequilibrium in garnet lherzolite xenoliths

Abstract

MEASURES of the Earth's thermal structure and evolution are important for understanding the driving forces of many geological processes. Estimates of the present variation of temperature with depth in the Earth can be made from surface heat-flow values together with assumptions concerning the composition, thermal conductivity and heat production of the crust and mantle1. More direct estimates have been made by calculating equilibrium temperatures and pressures of material brought to the Earth's surface as nodules in kimberlite pipes2,3 and volcanoes4. Results from the latter studies have been used to describe the equilibrium distribution of temperature and pressure within the Earth3 at times from the Precambrian5–8 to the late Mesozoic9. Although there has been much discussion of the exact shape3,10–12 and significance13,14 of the calculated geothermal gradients, it has generally been assumed that the calculated values of temperature and pressure are estimates of the true equilibrium conditions of the assemblage. Here the basic assumption of chemical equilibrium is examined critically and it is shown that the calculated geotherms may be at least partly spurious. The distribution in calculated temperatures and pressures can be explained by the inherent temperature dependence of the geobarometer and the failure of the assemblages to equilibrate with respect to all components.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sclater, J. G. & Franchetau, J. Geophys. J. R. astr. Soc. 20, 509–542 (1970).

    Article  ADS  Google Scholar 

  2. Boyd, F. R. & Nixon, P. H. Yb. Carnegie Instn. Wash. 72, 431–445 (1973); Physics and Chemistry of the Earth 9, 431–454 (Pergamon, Oxford, 1975).

    Google Scholar 

  3. Boyd, F. R. Geochim. cosmochim. Acta 37, 2533–2546 (1973); Yb. Carnegie Instn. Wash. 75. 521–523 (1976).

    Article  ADS  CAS  Google Scholar 

  4. MacGregor, I. D. Am. Mineralogist 59, 110–119 (1974).

    CAS  Google Scholar 

  5. Danchin, R. V. & Boyd, F. R. Yb. Carnegie Instn. Wash. 75, 531–538 (1976),

    Google Scholar 

  6. Danchin, R. V. 2nd Int. Kimberlite Conf. Extended Abstr. (1977).

  7. Barrett, D. R. & Allsopp, H. L. 1st Int. Kimberlite Conf. Extended Abstr. 23–25 (1973).

  8. Allsopp, H. L. & Kramers, J. D. 2nd Int. Kimberlite Conf. Extended Abstr. (1977).

  9. Allsopp, H. L. & Barrett, D. R. Physics and Chemistry of the Earth 9, 605–617 (Pergamon, Oxford, 1975).

    Book  Google Scholar 

  10. Mercier, J-C. & Carter, N. L. J. geophys. Res. 80, 3349–3362 (1975).

    Article  ADS  CAS  Google Scholar 

  11. Harte, B. Proc. R. Soc. A (in the press).

  12. Howells, S. & O'Hara, M. J. Proc. R. Soc. A (in the press).

  13. Wilshire, H. G. & Jackson, E. D. J. Geol. 83, 313–329 (1975).

    Article  ADS  CAS  Google Scholar 

  14. Irving, A. J. Am. Mineral. 61, 638–642 (1976).

    CAS  Google Scholar 

  15. Wells, P. R. A. Contr. Mineral. Petrol. 62, 129–139 (1977).

    Article  ADS  CAS  Google Scholar 

  16. Howells, S. & O'Hara, M. J. Nature 254, 406–408 (1975).

    Article  ADS  CAS  Google Scholar 

  17. Mori, T. & Green, D. H. Earth planet. Sci. Lett. 26, 277–286 (1975).

    Article  ADS  CAS  Google Scholar 

  18. Wood, B. J. Contr. Mineral. Petrol. 46, 1–15 (1974).

    Article  ADS  CAS  Google Scholar 

  19. Dawson, J. B. & Stephens, W. E. J. Geol. 83, 589–607 (1975).

    Article  ADS  CAS  Google Scholar 

  20. Banno, S. Phys. Earth Planet. Int. 3, 405–421 (1970).

    Article  ADS  CAS  Google Scholar 

  21. Raheim, A. & Green, D. H. Contr. Mineral. Petrol. 48, 179–203 (1974).

    Article  ADS  CAS  Google Scholar 

  22. Verhoogen, J. Am. Mineral. 37, 637–655 (1952).

    CAS  Google Scholar 

  23. Carmichael, D. M. Contr. Mineral. Petrol. 20, 244–267 (1969).

    Article  ADS  CAS  Google Scholar 

  24. Akella, J. & Boyd, F. R. Yb. Carnegie Instn. Wash. 73, 269–273 (1974).

    Google Scholar 

  25. Wood, B. J. Yb. Carnegie Instn. Wash. 75, 571–574 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

FRASER, D., LAWLESS, P. Palaeogeotherms: implications of disequilibrium in garnet lherzolite xenoliths. Nature 273, 220–222 (1978). https://doi.org/10.1038/273220a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/273220a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing