Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

3′,5′-cyclic AMP binds to and promotes polymerisation on platelet tubulin

Abstract

IN spite of considerable research, the regulatory mechanism of the reversible assembly–disassembly of microtubules remains obscure. Of the various processes and agents which have been examined as potential regulators probably none has received as much attention as cyclic nucleotides. Indeed, the number of reports which indicate that adenosine 3′,5′-cyclic monophosphate (cyclic AMP) exerts a stimulatory effect in the formation of microtubules, or maintains the latter in the presence of dissociative influences is steadily growing1–13. Most of these studies used intact cells, however, leaving unclear whether the cyclic nucleotide was directly or indirectly involved in this process. To try to resolve this problem, I have used tubulin extracted from platelets: addition of exogenous cyclic AMP has been reported to prevent cold-induced disassembly of microtubules in about 50% of the platelets14. I show here that cyclic AMP stimulates the assembly of microtubules and binds to platelet tubulin, primarily to the α-subunit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Johnson, G., Friedman, R. & Pastan, I. Proc. natn. Acad. Sci. U.S.A. 68, 425–429 (1971).

    Article  ADS  CAS  Google Scholar 

  2. Prasad, K. & Hsie, A. Nature new Biol. 233, 141–142 (1971).

    Article  CAS  Google Scholar 

  3. Roisen, F., Murphy, R. & Braden, W. Science 177, 809–811 (1972).

    Article  ADS  CAS  Google Scholar 

  4. Kirkland, W. L. & Burton, P. R. Nature new Biol. 240, 205–207 (1972).

    Article  CAS  Google Scholar 

  5. Hier, D., Arnason, B. & Young, M. Proc. natn. Acad. Sci. U.S.A. 69, 2268–2272 (1972).

    Article  ADS  CAS  Google Scholar 

  6. Schroder, C. & Hsie, A. Nature new Biol. 246, 58–60 (1973).

    Article  CAS  Google Scholar 

  7. Shapiro, D. Nature 241, 203–204 (1973).

    Article  ADS  CAS  Google Scholar 

  8. Porter, K. R., Puck, T. T., Hsie, A. W. & Kelley, D. Cell 2, 145–162 (1974).

    Article  CAS  Google Scholar 

  9. Brinkley, B. R., Fuller, G. M. & Highfield, D. P. Proc. natn. Acad. Sci. U.S.A. 72, 4981–4985 (1975).

    Article  ADS  CAS  Google Scholar 

  10. Borman, L. S., Dumont, J. N. & Hsie, A. W. Expl Cell Res. 91, 422–428 (1975).

    Article  CAS  Google Scholar 

  11. Rubin, R. W. & Weiss, G. D. J. Cell Biol. 64, 42–53 (1975).

    Article  CAS  Google Scholar 

  12. DiPasquale, A. M., McGuire, J., Moellmann, G. & Wasserman, S. J. J. Cell Biol. 71, 735–748 (1976).

    Article  CAS  Google Scholar 

  13. Pipeleers, D. G., Pipeleers-Marichal, M. A. & Kipnis, D. M. Science 191, 88–90 (1976).

    Article  ADS  CAS  Google Scholar 

  14. White, J. G. in Platelets: Production, Function, Transfusions and Storage (eds Baldini, M. G. & Ebbe, S.) 235–252 (Grune and Stratton, New York, 1974).

    Google Scholar 

  15. Ikeda, Y. & Steiner, M. J. biol. Chem. 251, 6135–6141 (1976).

    CAS  PubMed  Google Scholar 

  16. Erickson, H. P. & Voter, W. A. Proc. natn. Acad. Sci. U.S.A. 73, 2813–2817 (1976).

    Article  ADS  CAS  Google Scholar 

  17. Lee, J. C. & Timasheff, S. N. Biochemistry 14, 5183–5187 (1975).

    Article  CAS  Google Scholar 

  18. Dentler, W. L., Granett, S. & Rosenbaum, J. L. J. Cell Biol. 65, 237–241 (1975).

    Article  CAS  Google Scholar 

  19. Murphy, D. B. & Borisy, G. G. Proc. natn. Acad. Sci. U.S.A. 72, 2696–2700 (1975).

    Article  ADS  CAS  Google Scholar 

  20. Sloboda, R. D., Dentler, W. L. & Rosenbaum, J. L. Biochemistry 15, 4497–4505 (1976).

    Article  CAS  Google Scholar 

  21. Scatchard, G. Ann. N.Y. Acad. Sci. 51, 660–675 (1949).

    Article  ADS  CAS  Google Scholar 

  22. Steiner, A. L., Parker, C. W. & Kipnis, D. M. J. biol. Chem. 247, 1106–1120 (1972).

    CAS  PubMed  Google Scholar 

  23. Agarwal, K. & Steiner, M. Biochem. biophys. Res. Commun. 69, 962–969 (1976).

    Article  CAS  Google Scholar 

  24. Muneyama, K., Bauer, R. J., Shuman, D. A., Robins, R. K. & Simon, L. N. Biochemistry 10, 2390–2395 (1971).

    Article  CAS  Google Scholar 

  25. Eipper, B. A. J. biol. Chem. 249, 1407–1417 (1974).

    CAS  PubMed  Google Scholar 

  26. Ikeda, Y., Steiner, M. & Baldini, M. Fedn Proc. 35, 331 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

STEINER, M. 3′,5′-cyclic AMP binds to and promotes polymerisation on platelet tubulin. Nature 272, 834–835 (1978). https://doi.org/10.1038/272834a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/272834a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing