Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutations in nirA gene of Aspergillus nidulans and nitrogen metabolism

Abstract

IN both prokaryotes and eukaryotes many structural genes are subject to more than one form of control. The ways in which these various forms of regulation interact with each other are therefore of considerable importance for an understanding of the control of gene expression. In the ascomycete fungus Aspergillus nidulans, the structural genes for nitrate reductase and nitrite reductase, the enzymes of nitrate assimilation, are under the control of two positive regulatory genes, nirA (refs 1–3) and areA (ref. 4). The nirA gene product is required for the synthesis of nitrate and nitrite reductases and mediates nitrate induction of these enzymes. The areA gene product is necessary for the synthesis of a wide range of permeases and enzymes involved in nitrogen metabolism, including nitrate and nitrite reductases, and mediates ammonium repression of these permeases and enzymes. Previously available data have indicated that both nirA and areA products would be required for the synthesis of nitrate and nitrite reductases, the role of nirA being largely confined to nitrate induction and that of areA being confined to ammonium repression. Here we show that a more complex situation exists. A new allele of the nirA gene, designated nirAd–101 and derived from the wild-type allele in two mutational steps, results in both constitutivity and derepression and eliminates the need for a functional areA product.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pateman, J. A. & Cove, D. J. Nature 215, 1234–1237 (1967).

    Article  CAS  ADS  Google Scholar 

  2. Cove, D. J. Nature 224, 272–273 (1969).

    Article  CAS  ADS  Google Scholar 

  3. Cove, D. J. Proc. R. Soc. Lond. B176, 267–275 (1970).

    Article  CAS  ADS  Google Scholar 

  4. Arst, H. N., Jr & Cove, D. J. Molec. gen. Genet. 126, 111–141 (1973).

    Article  CAS  Google Scholar 

  5. Pateman, J. A., Rever, B. M. & Cove, D. J. Biochem. J. 104, 103–111 (1967).

    Article  CAS  Google Scholar 

  6. Cove, D. J. Molec. gen. Genet. 146, 147–159 (1976).

    Article  CAS  Google Scholar 

  7. Arst, H. N., Jr & Scazzocchio, C. Nature 254, 31–34 (1975).

    Article  CAS  ADS  Google Scholar 

  8. Rand, K. N. & Arst, H. N., Jr Molec. gen. Genet. 155, 67–75 (1977).

    Article  CAS  Google Scholar 

  9. Dunn-Coleman, N. S. & Pateman, J. A. Molec. gen. Genet. 152, 285–293 (1977).

    Article  CAS  Google Scholar 

  10. Hankinson, O. & Cove, D. J. J. biol. Chem. 249, 2344–2353 (1974).

    CAS  PubMed  Google Scholar 

  11. Englesberg, E. & Wilcox, G. A. Rev. Genet. 8, 219–242 (1974).

    Article  CAS  Google Scholar 

  12. Lee, N., Wilcox, G., Gielow, W., Arnold, J., Cleary, P. & Englesberg, E. Proc. natn. Acad. Sci. U.S.A. 71, 634–638 (1974).

    Article  CAS  ADS  Google Scholar 

  13. Pastan, I. & Adhya, S. Bact. Rev. 40, 527–551 (1976).

    CAS  PubMed  Google Scholar 

  14. Heffernan, L., Bass, R. & Englesberg, E. J. Bact. 126, 1119–1131 (1976).

    CAS  PubMed  Google Scholar 

  15. Heffernan, L. & Wilcox, G. J. Bact. 126, 1132–1135 (1976).

    CAS  PubMed  Google Scholar 

  16. Cove, D. J. Biochim. biophys. Acta 113, 51–56 (1966).

    Article  CAS  Google Scholar 

  17. Mackintosh, M. E. & Pritchard, R. H. Genet. Res. 4, 320–322 (1963).

    Article  Google Scholar 

  18. Maclnnes, K. R., Sheppard, D. E. & Falgout, B. J. Bact. 133, 178–184 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

RAND, K., ARST, H. Mutations in nirA gene of Aspergillus nidulans and nitrogen metabolism. Nature 272, 732–734 (1978). https://doi.org/10.1038/272732a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/272732a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing