Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cripto is required for correct orientation of the anterior–posterior axis in the mouse embryo

Abstract

The anterior–posterior axis of the mouse embryo is established by two distinct organizing centres in the anterior visceral endoderm and the distal primitive streak1,2,3,4,5,6,7. These organizers induce and pattern the head and trunk respectively, and have been proposed to be localized through coordinate cell movements that rotate a pre-existing proximal–distal axis6,8. Here we show that correct localization of both head- and trunk-organizing centres requires Cripto9,10, a putative signalling molecule that is a member of the EGF-CFC gene family11,12. Before gastrulation, Cripto is asymmetrically expressed in a proximal–distal gradient in the epiblast, and subsequently is expressed in the primitive streak and newly formed embryonic mesoderm. A Cripto null mutation generated by targeted gene disruption results in homozygous Cripto−/− embryos that mostly consist of anterior neuroectoderm and lack posterior structures, thus resembling a head without a trunk. Notably, markers of the head organizer are located at the distal end of the embryo, whereas markers of the primitive streak are absent or localized to the proximal side. Our results indicate that Cripto signalling is essential for the conversion of a proximal–distal asymmetry into an orthogonal anterior–posterior axis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Cripto at pre-gastrulation and gastrulation stages.
Figure 2: Targeted disruption of Cripto and characterization of the null phenotype.
Figure 3: Analysis of marker gene expression.
Figure 4: Schematic interpretation of the Cripto mutant phenotype.

Similar content being viewed by others

References

  1. Thomas, P. & Beddington, R. S. P. Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr. Biol. 6, 1487–1496 (1996).

    Article  CAS  Google Scholar 

  2. Varlet, I., Collignon, J. & Robertson, E. J. nodal expression in the primitive endoderm is required for specification of the anterior axis during mouse gastrulation. Development 124, 1033–1044 (1997).

    CAS  PubMed  Google Scholar 

  3. Belo, J. A. et al . Cerberus-like is a secreted factor with neutralizing activity expressed in the anterior primitive endoderm of the mouse gastrula. Mech. Dev. 68, 45–57 (1997).

    Article  CAS  Google Scholar 

  4. Tam, P. P. & Behringer, R. R. Mouse gastrulation: the formation of a mammalian body plan. Mech. Dev. 68, 3–25 (1997).

    Article  CAS  Google Scholar 

  5. Biben, C. et al . Murine cerberus homologue mCer-1: a candidate anterior patterning molecule. Dev. Biol. 194, 135–151 (1998).

    Article  CAS  Google Scholar 

  6. Thomas, P. Q., Brown, A. & Beddington, R. S. P. Hex: homeobox gene revealing peri-implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development 125, 85–94 (1998).

    CAS  PubMed  Google Scholar 

  7. Waldrip, W. R., Bikoff, E. K., Hoodless, P. A., Wrana, J. L. & Robertson, E. J. Smad2 signaling in extraembryonic tissues determines anterior–posterior polarity of the early mouse embryo. Cell 92, 797–808 (1998).

    Article  CAS  Google Scholar 

  8. Beddington, R. S. P. & Robertson, E. J. Anterior patterning in mouse. Trends Genet. 14, 277–284 (1998).

    Article  CAS  Google Scholar 

  9. Dono, R. et al . The murine cripto gene: expression during mesoderm induction and early heart morphogenesis. Development 118, 1157–1168 (1993).

    CAS  PubMed  Google Scholar 

  10. Johnson, S. E., Rothstein, J. L. & Knowles, B. B. Expression of epidermal growth factor family gene members in early mouse development. Dev. Dyn. 201, 216–226 (1994).

    Article  CAS  Google Scholar 

  11. Shen, M. M., Wang, H. & Leder, P. Adifferential display strategy identifies Cryptic, a novel EGF-related gene expressed in the axial and lateral mesoderm during mouse gastrulation. Development 124, 429–442 (1997).

    CAS  PubMed  Google Scholar 

  12. Zhang, J., Talbot, W. S. & Schier, A. F. Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Cell 92, 241–251 (1998).

    Article  CAS  Google Scholar 

  13. Kinoshita, N., Minshull, J. & Kirschner, M. W. The identification of two novel ligands of the FGF receptor by a yeast screening method and their activity in Xenopus development. Cell 83, 621–630 (1995).

    Article  CAS  Google Scholar 

  14. Xu, C., Liguori, G., Adamson, E. D. & Persico, M. G. Specific arrest of cardiogenesis in cultured embryonic stem cells lacking Cripto-1. Dev. Biol. 196, 237–247 (1998).

    Article  CAS  Google Scholar 

  15. Candia, A. F. et al . Mox-1 and Mox-2 define a novel homeobox gene subfamily and are differentially expressed during early mesodermal patterning in mouse embryos. Development 116, 1123–1136 (1992).

    CAS  PubMed  Google Scholar 

  16. Ang, S. L., Conlon, R. A., Jin, O. & Rossant, J. Positive and negative signals from mesoderm regulate the expression of mouse Otx2 in ectoderm explants. Development 120, 2979–2989 (1994).

    CAS  PubMed  Google Scholar 

  17. Tao, W. & Lai, E. Telencephalon-restricted expression of BF-1, a new member of the HNF-3/fork head gene family, in the developing rat brain. Neuron 8, 957–966 (1992).

    Article  CAS  Google Scholar 

  18. Crossley, P. H. & Martin, G. R. The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121, 439–451 (1995).

    CAS  PubMed  Google Scholar 

  19. Hermesz, E., Mackem, S. & Mahon, K. A. Rpx: a novel anterior-restricted homeobox gene progressively activated in the prechordal plate, anterior neural plate and Rathke's pouch of the mouse embryo. Development 122, 41–52 (1996).

    CAS  PubMed  Google Scholar 

  20. Muhr, J., Jessell, T. M. & Edlund, T. Assignment of early caudal identity to neural plate cells by a signal from caudal paraxial mesoderm. Neuron 19, 487–502 (1997).

    Article  CAS  Google Scholar 

  21. Shawlot, W. & Behringer, R. R. Requirement for Lim1 in head-organizer function. Nature 374, 425–430 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Ang, S. L. et al . Atargeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain Development 122, 243–252 (1996).

    CAS  PubMed  Google Scholar 

  23. Rhinn, M. et al . Sequential roles for Otx2 in visceral endoderm and neuroectoderm for forebrain and midbrain induction and specification Development 125, 845–856 (1998).

    CAS  PubMed  Google Scholar 

  24. Kannan, S. et al . Cripto enhances the tyrosine phosphorylation of Shc and activates mitogen-activated protein kinase (MAPK) in mammary epithelial cells J. Biol. Chem. 272, 3330–3335 (1997).

    Article  CAS  Google Scholar 

  25. Liguori, G. et al . Characterization of the mouse Tdgf1 gene and Tdgf pseudogenes Mamm. Genome 7, 344–348 (1996).

    Article  CAS  Google Scholar 

  26. Tybulewicz, V. L., Crawford, C. E., Jackson, P. K., Bronson, R. T. & Mulligan, R. C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene Cell 65, 1153–1163 (1991).

    Article  CAS  Google Scholar 

  27. Shalaby, F. et al . Failure of blood-island formation and vasculogenesis in Flk-1 deficient mice. Nature 376, 62–66 (1995).

    Article  ADS  CAS  Google Scholar 

  28. Deng, C., Wynshaw-Boris, A., Zhou, F., Kuo, A. & Leder, P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth Cell 84, 911–921 (1966).

    Article  Google Scholar 

  29. Deng, C.-X. et al . Murine FGFR-1 is required for early postimplantation growth and axial organization Genes Dev. 8, 3045–3057 (1994).

    Article  CAS  Google Scholar 

  30. Downs, K. M. & Davies, T. Staging of gastrulating mouse embryos by morphological landmarks in the dissecting microscope Development 118, 1255–1266 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Abate-Shen, R. Beddington, R. Behringer, E. DeRobertis, A. Joyner, R.Krumlauf, E. Lai, G. Martin, A. McMahon, J. Rossant and C. Wright for gifts of probes and reagents; H.Wang and L. Garrett for technical assistance; and C. Abate-Shen, R. Steward, and members of M.M.S.'s laboratory for advice and comments on the manuscript. This work was supported by a postdoctoral fellowship from the American Heart Association (J.D.), and by grants from the American Heart Association, the U.S. Army Breast Cancer Research Program, and the NIH (to M.M.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael M. Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, J., Yang, L., Yan, YT. et al. Cripto is required for correct orientation of the anterior–posterior axis in the mouse embryo. Nature 395, 702–707 (1998). https://doi.org/10.1038/27215

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/27215

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing