Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dynamics of the amphibian middle ear


Using laser speckle interferometry, we show that the directional information of acoustic signals is encoded in the motion of the eardrum. Moreover, the frequency sensitivity of the auditory system is determined by the mechanical properties of the middle ear, which acts like a damped resonator.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Pettigrew, A., Chung, S. H. & Anson, M. Nature 272, 138–142 (1978).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Helmholtz, H. J. rein. angew. Math. 57, 1–72 (1860).

    MathSciNet  Google Scholar 

  3. 3

    Dragsten, P. R., Webb, W. W., Paton, J. A. & Capranica, R. R. Science 185, 55–57 (1974); J. acoust. Soc. Amer. 60, 665–671 (1976).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Møller, A. R. J. acoust. Soc. Amer. 35, 1526–1534 (1963).

    ADS  Article  Google Scholar 

  5. 5

    Hillman, O., Schechter, H. & Rubinstein, M. Rev. mod. Phys. 36, 360 (1960).

    Google Scholar 

  6. 6

    Gilad, P. et al. J. acoust. Soc. Amer. 41, 1232–1236 (1967).

    ADS  CAS  Article  Google Scholar 

  7. 7

    Tonndorf, J. & Khanna, S. M. J. acoust. Soc. Amer. 44, 1546–1554 (1968).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Johnstone, B. M., Saunders, J. C. & Johnstone, J. R. Nature 227, 625–626 (1970).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Høgmoen, K. & Løkberg, O. J. Appl. Opt. 16, 1869–1875 (1977).

    ADS  Article  Google Scholar 

  10. 10

    Hamstra, R. H. & Wendland, P. Appl. Opt. 11, 1539–1547 (1972).

    ADS  Article  Google Scholar 

  11. 11

    Anson, M. & Bayley, P. Rev. sci. Instrum. 47, 370–373 (1976).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Dainty, J. C. (ed.) Topics in Applied Physics 9 (Springer-Verlag: Berlin Heidelberg, New York, 1975).

  13. 13

    Strother, W. F. J. comp. Physiol. Psychol. 52, 157–162 (1959).

    CAS  Article  Google Scholar 

  14. 14

    Hill, K. G. & Boyan, G. S. Nature 262, 390–391 (1976).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Kingsbury, B. G. & Reed, H. R. J. Morph. 20, 549–628 (1909).

    Article  Google Scholar 

  16. 16

    Eiselt, J. Arch. Naturgesch. 10, 179–230 (1941).

    Google Scholar 

  17. 17

    Baker, M. C. Copeia, 3, 613–616 (1969).

    Article  Google Scholar 

  18. 18

    Lombard, R. E. & Straughan, I. R. J. exp. Biol. 61, 61–93 (1974).

    Google Scholar 

  19. 19

    Lichte, N. Physik. Zeitschr. 19, 17–20 (1918).

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chung, SH., Pettigrew, A. & Anson, M. Dynamics of the amphibian middle ear. Nature 272, 142–147 (1978).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing