Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cellular glutathione is a key to the oxygen effect in radiation damage


OXYGEN is known to enhance biological changes induced by ionising radiation1,2. The changes include chromosome breaks in Tradescantia3 mutation production in Drosophila, maize and bacteria3–6, and rate of mitosis in grasshopper neuroblasts7. The biological and physical bases for the various enhancements remain obscure, and it has not yet been established that they are the result of a common mechanism. The quantitative aspects of the relationship between oxygen concentration and radiation response have been measured: for example, killing of Escherichia coli by X-ray radiation at a constant radiation dose8 and various interpretations of the quantitative aspects of the response base have been made9–12. Ionising radiation has been proposed to interact with water to produce several products and these products interact with cellular material to produce the biological effects observed. In the reactions proposed, cellular sulphydryl groups are supposed to be a primary cellular constituent which is reactive with the radiation products from water. We report here that one major cellular sulphydryl constituent, glutathione (GSH), is apparently the major component in the interaction between radiation products and the cell, for cells unable to synthesise glutathione cannot be protected against killing by ionising radiation by reduction of the external oxygen concentration.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout


  1. Holthusen, H. Pflügers Archiv de gesante Physiologie 181, 1–25 (1921).

    Google Scholar 

  2. Kiefer, J. in Radiation Research: Biomedical, Chemical and Physical Perspectives, (ed. Nygaard, O. F.) 1025–1037 (Academic, New York, 1975).

    Book  Google Scholar 

  3. Giles, N. H. & Riley, H. P. Proc. natn. Acad. Sci. U.S.A. 36, 336–344 (1950).

    Article  ADS  Google Scholar 

  4. Baker, W. K. & Sgourakis, E. Proc. natn. Acad. Sci. U.S.A. 36, 176–184 (1950).

    Article  ADS  CAS  Google Scholar 

  5. Schwartz, D. Proc. natn. Acad. Sci. U.S.A. 38, 490–494 (1952).

    Article  ADS  CAS  Google Scholar 

  6. Hollaender, A., Baker, W. K. & Anderson, E. H. Cold Spring Harb. Symp. quant. Biol. 16, 315–326 (1951).

    Article  CAS  Google Scholar 

  7. Gaulden, M. E. & Nix, M. Genetics 35, 665–666 (1950).

    Google Scholar 

  8. Hollaender, A. & Stapleton, G. E. Physiol. Rev. 33, 77–84 (1953).

    Article  CAS  Google Scholar 

  9. Burnett, W. T., Stapleton, G. F., Morse, M. L. & Hollaender, A. Proc. Soc. exp. Biol. Med. 77, 636–638 (1951).

    Article  CAS  Google Scholar 

  10. Burnett, W. T., Morse, M. L., Burke, A. W. & Hollaender, A. J. Bact. 63, 591–595 (1952).

    CAS  PubMed  Google Scholar 

  11. Morse, M. L., Burke, A. W. & Burnett, W. T. J. Cell. comp. Physiol. 41, 407–417 (1953).

    Article  CAS  Google Scholar 

  12. Alper, T. & Howard-Flanders, P. Nature 178, 978–979 (1956).

    Article  ADS  CAS  Google Scholar 

  13. Fuchs, J. A. & Warner, H. R. J. Bact. 124, 140–148 (1975).

    CAS  PubMed  Google Scholar 

  14. Apontoweil, P. & Berends, W. Biochim. biophys. Acta 399, 10–22 (1975).

    Article  CAS  Google Scholar 

  15. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. J. biol. Chcm. 193 265–275 (1951).

    CAS  Google Scholar 

  16. Bacq, Z. M. Experientia 7, 11–19 (1951).

    Article  CAS  Google Scholar 

  17. Hollaender, A., Stapleton, G. E. & Burnett, W. T. in Use of Tracers in the Study of Biological Effects of Radiation 96–113 (CIBA Foundation, London, 1951).

    Google Scholar 

  18. Ashwood-Smith, M. J., Robinson, D. M., Barnes, J. H. & Bridges, B. A. Nature 216, 137–139 (1967).

    Article  ADS  CAS  Google Scholar 

  19. Bridges, B. A. Adv. radiat. Biol. 3, 123–176 (1969).

    Article  CAS  Google Scholar 

  20. Harris, J. W., Koch, C. J., Power, J. A. & Biaglow, J. E. Radiat. Res. 70, 585–596 (1977).

    Article  ADS  CAS  Google Scholar 

  21. Bruce, A. K., Sansone, P. A. & MacVittie, T. J. Radiat. Res. 38, 95–108 (1969).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

MORSE, M., DAHL, R. Cellular glutathione is a key to the oxygen effect in radiation damage. Nature 271, 660–662 (1978).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing