Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of prostaglandin-mediated vasodilatation in inflammation


INFLAMMATORY reactions are characterised by hyperaemia, and exudation of plasma resulting in tissue swelling. Putative mediators of inflammation have usually been evaluated according to their ability to mimic inflammatory reactions1. Although prostaglandins were identified in inflammatory exudates2, and prostaglandin synthesis in vitro was shown to be inhibited by nonsteroid anti-inflammatory compounds3–5, prostaglandins (unlike histamine and bradykinin) were found to be poor at eliciting plasma exudation when injected into guinea pig6,7 or rabbit skin8. But, the finding that exogenous prostaglandins (notably of the E-type) potentiate plasma exudation produced by other mediators7–11 suggested that this may be the role of prostaglandins in inflammation. An alternative view has been proposed by Kuehl et al.12, who consider that since E and F prostaglandins fail fully to mimic inflammatory reactions, other products of arachidonic acid should be considered as mediators. They suggest that the unstable prostaglandin endoperoxide, PGG2, or a nonprostaglandin product of it (a free radical could be the important mediator. We have re-examined the mode of action of prostaglandins in inflammation by measuring both increased blood flow and plasma exudation. The results presented here suggest that the mediation of vasodilatation and increased vascular permeability should be considered separately. Prostaglandins (notably the E-type13,14) mediate vasodilatation (although they may have some additional mast cell degranulating activity in the rat15). It is this vasodilatation which is responsible for the potentiation of the exudation produced by other mediators. Our observations provide a new hypothesis for the microvascular mechanisms involved in the action of non-steroid anti-inflammatory compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others


  1. Lewis, T. The Blood Vessels of the Human Skin and their Responses (Shaw, London, 1927).

    Google Scholar 

  2. Willis, A. L. J. Pharm. Pharmac. 21, 126–128 (1969).

    Article  CAS  Google Scholar 

  3. Vane, J. R. Nature new Biol. 231, 232–235 (1971).

    Article  CAS  Google Scholar 

  4. Smith, J. B. & Willis, A. L. Nature new Biol. 231, 235–237 (1971).

    Article  CAS  Google Scholar 

  5. Ferreira, S. H., Moncada, S. & Vane, J. R. Nature new Biol. 231, 237–239 (1971).

    Article  CAS  Google Scholar 

  6. Horton, E. W. Nature 200, 892–893 (1963).

    Article  ADS  CAS  Google Scholar 

  7. Williams, T. J. & Morley, J Nature 246, 215–217 (1973).

    Article  ADS  CAS  Google Scholar 

  8. Williams, T. J. Br. J. Pharmac. 56, 341P–342P (1976).

    CAS  Google Scholar 

  9. Moncada, S., Ferreira, S. H. & Vane, J. R. Nature 246, 217–219 (1973).

    Article  ADS  CAS  Google Scholar 

  10. Thomas, G. & West, G. B. J. Pharm. Pharmac. 25, 747–748 (1973).

    Article  CAS  Google Scholar 

  11. Lewis, A. J., Nelson, D. J. & Sugrue, M. F. Br. J. Pharmac. 55, 51–56 (1975).

    Article  CAS  Google Scholar 

  12. Kuehl, F. A. et al. Nature 265, 170–173 (1977).

    Article  ADS  CAS  Google Scholar 

  13. Berström, S., Duner, H., von Euler, U. S., Pernow, B. & Sjövall, J. Acta physiol. scand. 45, 145–151 (1959).

    Article  Google Scholar 

  14. Solomon, L. M., Juhlin, L. & Kirschabaum, M. B. J. invest. Dermatol. 51, 280–282 (1968).

    Article  CAS  Google Scholar 

  15. Crunkhorn, P. & Willis, A. L. Br. J. Pharmac. 41, 49–56 (1971).

    Article  CAS  Google Scholar 

  16. Williams, T. J. J. Physiol., Lond. 254, 4P–5P (1976).

    ADS  CAS  PubMed  Google Scholar 

  17. Williams, T. J. & Morley, J. Br. J. exp. Path. 55, 1–12 (1974).

    CAS  Google Scholar 

  18. Johnston, M. G., Hay, J. B. & Movat, H. Z. Agents Actions 6, 705–711 (1976).

    Article  CAS  Google Scholar 

  19. Arturson, G. & Jonsson, C-E. Uppsala J. Med. Sci. 78, 181–188 (1973).

    Article  CAS  Google Scholar 

  20. Ikeda, K., Tanaka, K. & Katori, M. Prostaglandins 10, 747–758 (1975).

    Article  CAS  Google Scholar 

  21. Lewis, G. P., Westwick, J. & Willimas, T. J. Br. J. Pharmac. 59, 442P (1977).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and permissions

About this article

Cite this article

WILLIAMS, T., PECK, M. Role of prostaglandin-mediated vasodilatation in inflammation. Nature 270, 530–532 (1977).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing