Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Angle of subduction


PLATE tectonics is well established as an empirical description for modification of the Earth's outermost solid layer, although the dynamics of the plates are poorly understood. One view is that the plates are surface manifestations of the deep mantle convection which must inevitably occur if there are deepseated energy sources1. Mantle convection, however, may not be an efficient driver of plate motions2, and the negative buoyancy of subducting slabs may be more important2, 3. We consider here a simple fluid dynamical model which illustrates some of the general principles of subduction dynamics, and suggest an explanation for the observed subduction angle (the angle between the subducting slab and the Earth's surface). The model depends on the concept of a ‘critical’ negative buoyancy that plate material must attain before it can undergo steady-state subduction.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. Turcotte, D. L. & Oxburgh, E. R. An. Rev. Fluid Mech. 4, 33–68 (1972).

    ADS  Article  Google Scholar 

  2. Richter, F. M. Tectonophysics 38, 61–88 (1977).

    ADS  Article  Google Scholar 

  3. Forsyth, D. & Uyeda, S. Geophys. J. R. astr. Soc. 43, 163–200 (1975).

    ADS  Article  Google Scholar 

  4. Luyendyk, B. P. Geol. Soc. Am. Bull. 81, 3411–3416 (1970).

    ADS  Article  Google Scholar 

  5. Tullis, T. E. Preprint (1977).

  6. Jischke, M. C. J. Geophys. Res. 80, 4809–4813 (1975).

    ADS  Article  Google Scholar 

  7. Isaacs, B. & Molnar, P. Nature 228, 1121–1124 (1969).

    Article  Google Scholar 

  8. McKenzie, D. P., Geophys. J. R. astr. Soc. 18, 1–32 (1969).

    ADS  Article  Google Scholar 

  9. Oxburgh, E. R. & Parmentier, E. M. J. Geol Soc., Lond. 133, 343–355 (1977).

    Article  Google Scholar 

  10. Davies, G. F. Geophys. J. R. astr. Soc. 49, 557–563 (1977).

    ADS  Article  Google Scholar 

  11. Hales, A. L. Earth planet Sci. Lett. 6, 31–34 (1969).

    ADS  Article  Google Scholar 

  12. Froidevaux, C. & Schubert, G. J. Geophys. R. 80, 2553–2564 (1975).

    ADS  Article  Google Scholar 

  13. Melosh, H. J. Tectonophysics 35, 363–390 (1976).

    ADS  Article  Google Scholar 

  14. McElhinny, M. W. & McWilliams, M. O. Tectonophvsics 40, 139–159 (1977).

    ADS  Article  Google Scholar 

  15. Tovish, A., Luyendyk, B. & Schubert, G. Trans Am. Geophys. Un. EOS 57, 1002 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

STEVENSON, D., TURNER, J. Angle of subduction. Nature 270, 334–336 (1977).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing