Cis–trans isomerisation in rhodopsin occurs in picoseconds

Abstract

IT has been believed for some time that the primary event in vision, the photochemical formation of bathorhodopsin, can be attributed to a cis–trans photoisomerisation1. Recently this model has been questioned. Busch et al. proposed that the less-than-6-ps formation time of bathorhodopsin from rhodopsin does not allow significant isomerisation of the 11-cis chromophore to an all-trans isomer2. This apparent difficulty with the cis–trans photoisomerisation model has prompted alternative models including (1) a mechanism involving deprotonation of the Schiff base nitrogen3, (2) proton transfer from the retinal methyl at position five to opsin4,5 (involving the shifting of double bonds along the polyene chain to form a ‘retro’ type retinal), and (3) a photoinduced electron transfer to retinal from a protein donor group6. We have approached this question by performing picosecond absorption kinetic measurements on the formation time of bathorhodopsin from bovine rhodopsin and isorhodopsin. The essence of this experiment is that bathorhodopsin, being the common photo-product of rhodopsin (11-cis retinal) and isorhodopsin (9-cis retinal) must be an isomerised product of at least one of these pigments, but could be a product of both pigments (that is, basically all-trans retinal). Thus formation time measurements of bathorhodopsin from the two primary pigments can settle whether isomerisation can take place on the picosecond time scale.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Hubbard, R. & Kropf, A. Proc. natn. Acad. Sci. U.S.A. 44, 130–139 (1958).

    CAS  ADS  Article  Google Scholar 

  2. 2

    Busch, G. E., Applebury, M. L., Lamola, A. A. & Rentzepis, P. M. Proc. natn. Acad. Sci. U.S.A. 69, 2802–2806 (1972).

    CAS  ADS  Article  Google Scholar 

  3. 3

    Thomson, A. J. Nature 254, 178–179 (1975).

    ADS  Article  Google Scholar 

  4. 4

    Fransen, M. R. et al. Nature 260, 726–727 (1976).

    CAS  ADS  Article  Google Scholar 

  5. 5

    van der Meer, K., Mulder, J. J. C. & Lugtenburg, J. Photochem. Photobiol. 24, 363–367 (1976).

    CAS  Article  Google Scholar 

  6. 6

    Huppert, D., Rentzepis, P. M. & Kliger, D. S. Photochem. Photobiol. 25, 193–197 (1977).

    CAS  Article  Google Scholar 

  7. 7

    Wald, G. Science 162, 230–239 (1968).

    CAS  ADS  Article  Google Scholar 

  8. 8

    Ebrey, T. & Honig, B. Q. Rev. Biophys. 8, 124–184 (1975).

    Article  Google Scholar 

  9. 9

    Honig, B. & Ebrey, T. A. Rev. Biophys. Bioengng 3, 151–177 (1974).

    CAS  Article  Google Scholar 

  10. 10

    Hong, K. & Hubbell, W. L. Biochemistry 12, 4517–4523 (1973).

    CAS  Article  Google Scholar 

  11. 11

    Oseroff, A. R. & Callender, R. H. Biochemistry 13, 4243–4248 (1974).

    CAS  Article  Google Scholar 

  12. 12

    Dartnall, H. J. A. in Handbook of Sensory Physiology, V11/1, 122–145 (1972).

    Google Scholar 

  13. 13

    Rosenfeld, T., Honig, B., Ottolenghi, M., Hurley, J. & Ebrey, T. G. Pure appl. Chem. 49, 341–351 (1977).

    CAS  Article  Google Scholar 

  14. 14

    Ricard, D., Lowdermilk, W. H. & Ducuing, J. Chem. Phys. Lett. 16, 617–621 (1972).

    CAS  ADS  Article  Google Scholar 

  15. 15

    Callender, R. H. & Honig, B. A. Rev. Biophys. Bioengng. 6, 33–55 (1977).

    CAS  Article  Google Scholar 

  16. 16

    Mathies, R., Oseroff, A. R., Freedman, T. B. & Stryer, L. in Tunable Laser Applications (eds Jaeger, T., Stokseth, P. & Mooradian, A. (Springer, New York, in the press).

  17. 17

    Mathies, R., Freedman, T. B. & Stryer, L. molec. Biol. 109, 367–372 (1977).

    CAS  Article  Google Scholar 

  18. 18

    Mathies, R., Oseroff, A. R. & Stryer, L. Proc. natn. Acad. Sci. U.S.A. 73, 1–5 (1976).

    CAS  ADS  Article  Google Scholar 

  19. 19

    Warshel, A. Nature 260, 679–683 (1976).

    CAS  ADS  Article  Google Scholar 

  20. 20

    Yoshizawa, T. & Wald, G. Nature 197, 1279–1286 (1963).

    CAS  ADS  Article  Google Scholar 

  21. 21

    Duguay, M. A. & Hansen, J. W. Appl. Phys. Lett. 15, 192–194 (1969).

    CAS  ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

GREEN, B., MONGER, T., ALFANO, R. et al. Cis–trans isomerisation in rhodopsin occurs in picoseconds. Nature 269, 179–180 (1977). https://doi.org/10.1038/269179a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.