Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of adenylate cyclase activity in glial—adrenal hybrid cells

Abstract

SOMATIC cell hybrids, formed by fusion of hormone-responsive and insensitive cells, have been used to evaluate the structure and genetic regulation of the hormone-sensitive adenylate cyclase system1–6. In the cell hybrids studied so far, catecholamine-sensitive adenylate cyclase activity was lost when catecholamine-responsive and insensitive cells were fused. Prostaglandin E1 (PGE1)-sensitive adenylate cyclase activity, on the other hand, was retained in hybrids between PGE1-sensitive and insensitive cells. Where examined, the presence or the absence of hormone sensitivity in the hybrids closely correlated with hormone receptor activity as measured by ligand-binding assays1–3. These observations suggest that genetic mechanisms may control the expression of hormone responsiveness at the level of the hormone receptor. To examine these patterns of regulation further, we have formed cell hybrids between rat glial tumour cells with adenylate cyclase activity responsive to β-adrenoceptor agonists7 and mouse adrenocortical tumour cells with adrenocorticotrophic hormone (ACTH)-sensitive adenylate cyclase activity8. Besides having distinct functional hormone receptors, the adenylate cyclases of parental cells exhibit marked quantitative differences in response to fluoride ion7,8. We find that the glial–adrenal hybrids retain the adrenaline-sensitive adenylate cyclase activity characteristic of the glial parent, and lose ACTH sensitivity. The level of the fluoride response, however, is characteristic of the adrenal parent. These data indicate that hormone receptor and catalytic unit activities in the adenylate cyclase system are independently regulated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gilman, A. G. & Minna, J. D. J. biol Chem. 248, 6610–6617 (1973).

    CAS  PubMed  Google Scholar 

  2. Minna, J. D. & Gilman, A. G. J. biol. Chem. 248, 6618–6625 (1973).

    CAS  PubMed  Google Scholar 

  3. Brunton, L. L., Maguire, M. E., Anderson, H. J. & Gilman, A. G. J. biol. Chem. 252, 1293–1302(1977).

    CAS  PubMed  Google Scholar 

  4. Hamprecht, B. & Schultz, J., Hoppe-Seyler's Z. Physiol. Chem. 354, 1633–1641 (1973).

    Article  CAS  Google Scholar 

  5. Ayad, S. R. & Foster, S. J. Cell 3, 135–140 (1974).

    Article  CAS  Google Scholar 

  6. Sharma, S. K., Nirenberg, M. & Klee, W. A. Proc. natn. Acad. Sci. U.S.A. 72, 590–594 (1975).

    Article  ADS  CAS  Google Scholar 

  7. Schimmer, B. P. Biochem biophys. Acta. 252, 567–573 (1971).

    Article  CAS  Google Scholar 

  8. Schimmer, B. P. J. biol. Chem. 247, 3134–3138 (1972).

    CAS  PubMed  Google Scholar 

  9. Taunton, O. D., Roth, J. & Pastan, I. J. biol. Chem. 244, 247–253 (1969).

    CAS  PubMed  Google Scholar 

  10. Benda, P., Lightbody, J., Sato, G., Levine, L. & Sweet, W. Science 161, 370–371 (1968).

    Article  ADS  CAS  Google Scholar 

  11. Yasumura, Y., Buonassisi, V. & Sato, G. H. Cancer Res. 26, 529–535 (1966).

    CAS  PubMed  Google Scholar 

  12. Schimmer, B. P. J. Cell Physiol. 74, 115–122 (1969).

    Article  CAS  Google Scholar 

  13. Schimmer, B. P., Stevenson, L. F., ter Hofstede, C., Cheung, N. H., & Marks, A. Expl Cell Res. 86, 425–428 (1974).

    Article  CAS  Google Scholar 

  14. Harris, H. & Cook, P. R. J. Cell Sci. 5, 121–134 (1969).

    CAS  PubMed  Google Scholar 

  15. Littlefield, J. W. Proc. natn. Acad. Sci. U.S.A. 50, 568–576 (1963).

    Article  ADS  CAS  Google Scholar 

  16. Watkins, J. in Methods in Virology 5 (eds Maramorosch, K. & Koprowski, H.) 1–32 (Academic, New York, 1971).

    Google Scholar 

  17. Littlefield, J. W. Science 145, 709–710 (1964).

    Article  ADS  CAS  Google Scholar 

  18. Rothfels, K. H. & Siminovitch, L. Stain Tech. 33, 73–77 (1958).

    Article  CAS  Google Scholar 

  19. Schimmer, B. P. Nature 259, 482–483 (1976).

    Article  ADS  CAS  Google Scholar 

  20. Orly, J. & Schramm, M. Proc. natn. Acad. Sci. U.S.A. 73, 4410–4414 (1976).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SCHIMMER, B., TSAO, J. & CHEUNG, N. Regulation of adenylate cyclase activity in glial—adrenal hybrid cells. Nature 269, 162–163 (1977). https://doi.org/10.1038/269162a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/269162a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing