Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interaction of colchicine with phosphatidylcholine membranes

Abstract

EXPERIMENTAL results have suggested that the alkaloid drug colchicine affects the lateral mobility of membrane components1–5. To explain these observations, Wunderlich et al.6 have proposed two alternative hypotheses: the lipophilic drug intercalates into the lipid bilayer in a manner analogous to cholesterol; or colchicine acts by binding to membrane protein. It is well documented that in lipid bilayers of both model and biological membranes, the methylene groups of the lipid fatty acyl chains are more mobile near the chain terminus than near the glycerol backbone of the phospho-lipid, resulting in a gradient of increasing fluidity in the non-polar phase of the bilayer interior7–12. From nuclear magnetic resonance (NMR) and spin-label electron spin resonance (ESR) studies it has been found that cholesterol, by intercalating between the phospholipid fatty acyl chain, markedly increases the rigidity of the hydrocarbon phase of the bilayer13–19. We present here the results of a detailed spin-label study using phosphatidylcholine (PC) liposomes to show that, in contrast with cholesterol, colchicine does not detectably change the rigidity of PC bilayers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Berlin, R. D., Oliver, J. M., Ukena, T. E. & Yin, H. H. Nature 247, 45–46 (1974).

    Article  ADS  CAS  Google Scholar 

  2. Berlin, R. D. & Ukena, T. E. Nature new Biol. 238, 120–122 (1972).

    Article  CAS  Google Scholar 

  3. de Petris, S. Nature 250, 54–56 (1974).

    Article  ADS  CAS  Google Scholar 

  4. Edelman, G. M., Yahara, I. & Wang, J. L. Proc. natn. Acad. Sci. U.S.A. 70, 1442–1446 (1973).

    Article  ADS  CAS  Google Scholar 

  5. Furcht, L. T. & Scott, R. E. in Experimental Cell Research (eds Caspersson, T., Gustafson, T., Mazia, D. & Ringertz, N. R.), 271–282 (Academic, New York and London, 1975).

    Google Scholar 

  6. Wunderlich, F., Müller, R. & Speth, V. Science 182, 1136–1138 (1973).

    Article  ADS  CAS  Google Scholar 

  7. Chan, S. I., Seiter, C. H. A. & Feigenson, G. W. Biochem. biophys. Res. Commun. 46, 1488–1492 (1972).

    Article  CAS  Google Scholar 

  8. Godici, P. E. & Landsberger, F. R. Biochemistry 14, 3927–3933 (1975).

    Article  CAS  Google Scholar 

  9. Horwitz, A. F., Horsley, W. J. & Klein, M. P. Proc. natn. Acad. Sci. U.S.A. 69, 590–593 (1972).

    Article  ADS  CAS  Google Scholar 

  10. Hubbell, W. L. & McConnell, H. M. Proc. natn. Acad. Sci. U.S.A. 64, 20–27 (1969).

    Article  ADS  CAS  Google Scholar 

  11. Jost, P., Libertini, L. J., Hebert, V. C. & Griffith, O. H. J. molec. Biol. 59, 77–98 (1971).

    Article  CAS  Google Scholar 

  12. Levine, Y. K., Birdsall, N. J. M., Lee, A. G. & Metcalfe, J. C. Biochemistry 11, 1416–1421 (1972).

    Article  CAS  Google Scholar 

  13. Darke, A., Finer, E. G., Flook, A. G. & Phillips, M. C. J. molec. Biol. 63, 265–279 (1972).

    Article  CAS  Google Scholar 

  14. Gent, M. P. N. & Prestegard, J. H. Biochemistry 13, 4027–4033 (1974).

    Article  CAS  Google Scholar 

  15. Keough, K. M., Oldfield, E. & Chapman, D. Chem. Phys. Lipids 10, 37–50 (1973).

    Article  CAS  Google Scholar 

  16. Lee, A. G., Birdsall, N. J. M., Levine, Y. K. & Metcalfe, J. C. Biochim. biophys. Acta 255, 43–56 (1972).

    Article  CAS  Google Scholar 

  17. McConnell, H. M. & McFarland, B. G. Ann. N. Y. Acad. Sci. 195, 207–217 (1972).

    Article  ADS  CAS  Google Scholar 

  18. Mendelsohn, R. Biochim. biophys. Acta 290, 15–21 (1972).

    Article  CAS  Google Scholar 

  19. Saito, H., Schreier-Mucillo, S. & Smith, I. C. P. FEBS Lett. 33, 281–285 (1973).

    Article  CAS  Google Scholar 

  20. McConnell, H. M., Wright, K. L. & McFarland, B. G. Biochem. biophys. Res. Commun. 47, 273–281 (1972).

    Article  CAS  Google Scholar 

  21. Devaux, P. & McConnell, H. M. J. Am. chem. Soc. 94, 4475–4481 (1972).

    Article  CAS  Google Scholar 

  22. Lee, A. G., Birdsall, N. J. M. & Metcalfe, J. C. Biochemistry 12, 1650–1659 (1973).

    Article  CAS  Google Scholar 

  23. Singleton, W. S., Gray, M. S., Brown, L. N. & White, J. L. J. Am. Oil Chem. Soc. 42, 53–56 (1965).

    Article  CAS  Google Scholar 

  24. Briére, R., Lemaire, H. & Rassat, A. Bull. Soc. Chim. Fr. Ser. 5, 31, 3273–3283 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ALTSTIEL, L., LANDSBERGER, F. Interaction of colchicine with phosphatidylcholine membranes. Nature 269, 70–72 (1977). https://doi.org/10.1038/269070a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/269070a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing