Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Heterogeneous population of mitochondrial DNA molecules in higher plants

Abstract

THE physicochemical properties of mitochondrial (mt)-DNA of higher plants have been reported1–4. mt-DNAs occur as closed circles with molecular weights of (60–70) × 106 and it is likely that each mitochondria contains several of these circles. mt-DNAs isolated from different higher plants exhibit similar physicochemical parameters: all mt-DNAs so far analysed1–5 in higher plants band at a unique buoyant density of 1.706 g cm−3 in neutral CsCl gradients and the few published melting points and reassociation kinetics are not significantly different2–4. Not enough values have been reported to state on possible differences in the contour length measured by electron microscopy. Thus, mt-DNAs isolated from different higher plants cannot be specifically identified by conventional physicochemical techniques. We have recently reported that the analysis of restriction nuclease digests by gel electrophoresis provides a very sensitive test to identify specifically chloroplastic (cp)-DNAs isolated from different plant genera and species6. We show here that this technique also allows the characterisation and the specific identification of mt-DNAs isolated from various higher plants. We used EcoRI specific cleavage to evidence the general occurrence of heterogeneous population of mt-DNA molecules within an higher plant and to detect clear differences between mt-DNAs extracted from normal and cytoplasmic male-sterile wheat.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wolstenholme, D. R. & Gross, N. J. Proc. Natn. Acad. Sci. U.S.A. 61, 245–252 (1968).

    Article  ADS  CAS  Google Scholar 

  2. Wells, R. & Birnstiel, M. Biochem. J. 112, 777–786 (1969).

    Article  CAS  Google Scholar 

  3. Kolodner, R. & Tewari, K. K. Proc. Natn. Acad. Sci. U.S.A. 69, 1830–1834 (1972).

    Article  ADS  CAS  Google Scholar 

  4. Vedel, F. & Quétier, F. Biochim. biophys. Acta 340, 374–387 (1974).

    Article  CAS  Google Scholar 

  5. Wells, R. & Ingle, J. Pl. Physiol. 46, 178–179 (1970).

    Article  ADS  CAS  Google Scholar 

  6. Vedel, F., Quétier, F. & Bayen, M. Nature 263, 440–442 (1976).

    Article  ADS  CAS  Google Scholar 

  7. Antis, P. T. P. & Northcote, D. H. J. exp. Bot. 24, 425–441 (1973).

    Article  Google Scholar 

  8. Grienenberger, J. M., Quétier, F. & Vedel, F. Pl. Sci. Lett. 6, 379–388, (1976).

    Article  CAS  Google Scholar 

  9. Davis, R. W., Simon, M. N. & Davidson, N. Meth. Enzym. 21, 413–428 (1971).

    Article  Google Scholar 

  10. Kolodner, R. & Tewari, K. K. Biochim. biophys. Acta 402, 372–390 (1975).

    Article  CAS  Google Scholar 

  11. Thomas, M. & Davis, R. W. J. molec. Biol. 91, 315–328 (1975).

    Article  CAS  Google Scholar 

  12. Kihara, H. Seiken Ziho 22, 107–111 (1971).

    Google Scholar 

  13. Flavell, R. B. Pl. Sci. Lett. 3, 259–263 (1974).

    Article  Google Scholar 

  14. Levings, C. S. & Pring, D. R. Science 193, 158–160 (1976).

    Article  ADS  CAS  Google Scholar 

  15. Arber, W. & Linn, S. A. Rev. Biochem. 38, 467–500 (1969).

    Article  CAS  Google Scholar 

  16. Baxter, R. & Kirk, J. T. O. Nature 222, 272–273 (1969).

    Article  ADS  CAS  Google Scholar 

  17. Fletcher, J. S. Nature 238, 466–467 (1972).

    Article  ADS  CAS  Google Scholar 

  18. Potter, S. S., Newbold, J. E., Hutchison III, C. A. & Edgell, M. H. Proc. natn. Acad. Sci. U.S.A. 72, 4496–4500 (1975).

    Article  ADS  CAS  Google Scholar 

  19. Kleisen, C. M. & Borst, P. Biochim. biophys. Acta 407, 473–478 (1975).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

QUETIER, F., VEDEL, F. Heterogeneous population of mitochondrial DNA molecules in higher plants. Nature 268, 365–368 (1977). https://doi.org/10.1038/268365a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/268365a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing