Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Increased cyclic GMP levels associated with contraction in muscle fibres of the giant barnacle

Abstract

CYCLIC GMP has been implicated as an intracellular second messenger in a variety of systems. In particular, a number of hormones and neurotransmitters have been shown to raise cellular cyclic GMP levels in vitro1–9. In many of these systems, however, Ca2+ entry seems to be responsible both for the physiological effect of the hormone and for the hormone-stimulated increase in cyclic GMP (refs 4–9). We have investigated the relationship between calcium and cyclic GMP levels in muscles of the giant barnacle Balanus nubilus. This preparation has a number of advantages. Within fairly narrow limits intracellular free calcium levels in the resting muscle are known10. The depolarisation-induced increase in free calcium, and the resulting activation of contraction, have also been extensively documented10,11. In addition, the depolarisation-induced changes in intracellular free calcium can be easily manipulated because the extracellular fluid is the apparent source of the calcium which couples excitation to contraction12. We report here that either KC1 depolarisation or nerve stimulation increases the cyclic GMP content of barnacle muscle. This increase seems to be associated with Ca2+ entry rather than with a neurotransmitter–receptor interaction per se. This is the first report of an increase in cyclic GMP associated with contractile activity in cross-striated muscle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. George, W. J., Polson, J. B., O'Toole, A. G. & Goldberg, N. D. Proc. natn. Acad. Sci. U.S.A. 66, 398–403 (1970).

    Article  ADS  CAS  Google Scholar 

  2. Ferrendelli, J. A., Chang, M. M. & Kinscherf, D. A. J. Neurochem. 22, 535–540 (1974).

    Article  CAS  Google Scholar 

  3. Lee, T.P., Kuo, J. F. & Greengard, P. Proc. natn. Acad. Sci. U.S.A. 69, 3287–3291 (1972).

    Article  ADS  CAS  Google Scholar 

  4. Schultz, G., Hardman, J. G., Schultz, K., Baird, C. E. & Sutherland, E. W. Proc. natn. Acad. Sci. U.S.A. 70, 3889–3893 (1973).

    Article  ADS  CAS  Google Scholar 

  5. Kebabian, J. W., Steiner, A. L. & Greengard, P. J. Pharmac. exp. Ther. 193, 474–488 (1975).

    CAS  Google Scholar 

  6. Clyman, R. I., Blacksin, A. S., Sandler, J. A., Manganiello, V. C. & Vaughan, M. J. biol. Chem. 250, 4718–4721 (1975).

    CAS  PubMed  Google Scholar 

  7. Schultz, G. & Hardman, J. G. Adv. Cyclic Nucl. Res. 5, 339–351 (1975).

    CAS  Google Scholar 

  8. Smith, R. J. & Ignarro, L. J. Proc. natn. Acad. Sci. U.S.A., 72, 108–112 (1975).

    Article  ADS  CAS  Google Scholar 

  9. Ferrendelli, J. A., Rubin, E. H. & Kinscherf, D. A. J. Neurochem. 26, 741–748 (1976).

    Article  CAS  Google Scholar 

  10. Hagiwara, S. & Nakajima, S. J. gen. Physiol. 49, 807–818 (1966).

    Article  CAS  Google Scholar 

  11. Ashley, C. C. & Ridgway, E. B. J. Physiol., Lond. 209, 105–130 (1970).

    Article  CAS  Google Scholar 

  12. Atwater, I., Rojas, E. & Vergara, J. J. Physiol., Lond. 243, 523–551 (1974).

    Article  CAS  Google Scholar 

  13. Hoyle, G. & Smyth, T., Jr Comp. Biochem. Physiol. 10, 291–314 (1963).

    Article  CAS  Google Scholar 

  14. Gerschenfeld, H. M. Physiol. Rev. 53, 1–119 (1973).

    Article  CAS  Google Scholar 

  15. Hoyle, G., McNeill, P. A. & Selverston, A. I. J. Cell Biol. 56, 74–91 (1973).

    Article  CAS  Google Scholar 

  16. Nawrath, H. Nature 267, 72–74 (1977).

    Article  ADS  CAS  Google Scholar 

  17. McAfee, D. A. & Greengard, P. Science 178, 310–312 (1972).

    Article  ADS  CAS  Google Scholar 

  18. Rasmussen, H., Jensen, P., Lake, W., Friedmann, N. & Goodman, D.B.P. Adv. Cyclic Nucl. Res. 5, 375–394 (1975).

    CAS  Google Scholar 

  19. Berridge, M. J. Adv. Cyclic Nucl. Res. 6, 1–98 (1976).

    Google Scholar 

  20. Ong, S. H. & Steiner, A. L. Science 195, 183–185 (1977).

    Article  ADS  CAS  Google Scholar 

  21. Lomo, T. & Rosenthal, J. J. Physiol., Lond. 221, 493–513 (1972).

    Article  CAS  Google Scholar 

  22. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. J. biol. Chem. 193, 265–275 (1951).

    CAS  Google Scholar 

  23. Steiner, A. L., Parker, C. W. & Kipnis, D. M. J. biol. Chem. 247, 1106–1113 (1972).

    CAS  Google Scholar 

  24. Brown, B. L., Albano, J. D. M., Ekins, R. P., Sgherzi, A. M. & Tampion, W. Biochem. J. 121, 561–562 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BEAM, K., NESTLER, E. & GREENGARD, P. Increased cyclic GMP levels associated with contraction in muscle fibres of the giant barnacle. Nature 267, 534–536 (1977). https://doi.org/10.1038/267534a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/267534a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing