Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of electrogenic sodium pump in slow synaptic inhibition is re-evaluated

Abstract

THE mechanism of synaptic transmission at most synapses involves an increase in conductance of the postsynaptic membrane to certain ions1,2. Certain slow postsynaptic inhibitions in both the central and peripheral nervous systems are, however, not generated in this way3–13. Nishi and Koketsu3–5 proposed that the slow inhibitory postsynaptic potential (IPSP) in bullfrog sympathetic ganglia is due to a unique mechanism, the synaptic activation of the electrogenic Na pump (see also refs 11–15). In many, if not all, neurones, the outward pumping of sodium is coupled to the inward transport of K, with more Na extruded than K taken in, thus producing an outward movement of positive charge16. This electrogenic pumping of Na, which is blocked by ouabain or K-free Ringer, produces a hyperpolarisation of the membrane without a change in membrane permeability16. In the present experiments, the direct role of the electrogenic Na pump in slow synaptic inhibition was tested. The experiments were carried out on the ninth or tenth paravertebral sympathetic ganglion of the bullfrog using the sucrose gap technique. We found that although electrogenic Na pumping was inhibited by ouabain or K-free Ringer, the slow IPSP was not blocked by ouabain and was enhanced by K-free Ringer. The data are consistent with the hypothesis that the slow IPSP may result from an inactivation of Na conductance rather than from an activation of the electrogenic Na pump.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Eccles, J. C. The Physiology of Synapses (Springer, Berlin, 1964).

    Book  Google Scholar 

  2. Katz, B. Nerve Muscle and Synapse (McGraw Hill, New York, 1966)

    Google Scholar 

  3. Nishi, S. & Koketsu, K. Life Sci. 6, 2049–2055 (1967).

    Article  CAS  Google Scholar 

  4. Nishi, S. & Koketsu, K. J. Neurophysiol. 31, 717–728 (1968).

    Article  CAS  Google Scholar 

  5. Koketsu, K. & Nakamura, M. Kurume med. J. 22, 5–11 (1975)

    Article  Google Scholar 

  6. Libet, B. Fedn Proc. 29, 1945–1956 (1970).

    CAS  Google Scholar 

  7. Weight, F. F. & Padjen, A. Brain Res. 55, 219–224 (1973).

    Article  CAS  Google Scholar 

  8. Siggins, G. R., Oliver, A. P., Hoffer, B. J. & Bloom, F. E. Science 171, 192–194 (1971).

    Article  ADS  CAS  Google Scholar 

  9. Engberg, I. & Marshall, K. Acta physiol. Scand. 83, 142–144 (1971)

    Article  CAS  Google Scholar 

  10. Oliver, A. P. & Segal, M. Soc. Neurosci. 4th Ann. Mtg, Abstr. 361 (1974).

  11. Phillis, J.W. Life Sci. 14, 1189–1201 (1974); Life Sci. 15, 213–222 (1974).

    Article  CAS  Google Scholar 

  12. Yarbrough, G.G. Neuropharmacology 15, 335–338 (1976).

    Article  CAS  Google Scholar 

  13. Kobayashi, H. & Libet, B. Proc. natn. Acad. Sci. U.S.A., 60, 1304–1311 (1968).

    Article  ADS  CAS  Google Scholar 

  14. Pinsker, H. & Kandel, E. Science 163, 931–935 (1969).

    Article  ADS  CAS  Google Scholar 

  15. Kehoe, J. S. & Ascher, P. Nature 255, 820–823 (1970).

    Article  ADS  Google Scholar 

  16. Thomas, R. C. Physiol. Rev. 52, 563–594 (1972).

    Article  CAS  Google Scholar 

  17. Brown, D. A., Brownstein, M. & Scholfield, C. N. Br. J. Pharmac. 44, 651–671, (1972).

    Article  CAS  Google Scholar 

  18. Lees, G. M. & Wallis, D. I. Br. J. Pharmac. 50, 79–93 (1974).

    Article  CAS  Google Scholar 

  19. Brown, D. A. & Scholfield, C. N. J. Physiol., Lond. 242, 307–319 (1974); J. Physiol. Lond. 242, 321–351 (1974).

    Article  CAS  Google Scholar 

  20. Wang, C. M. & Narahashi, T. J. Pharmac. exp. Ther. 182, 427–441 (1972).

    CAS  Google Scholar 

  21. Jenkinson, D. H. J. Physiol., Lond. 152, 309–324 (1960).

    Article  CAS  Google Scholar 

  22. Toyodo, J. I., Nosaki, H. & Tomita, T. Vision Res. 9, 453–463 (1969).

    Article  Google Scholar 

  23. Baylor, D. A. & Fuortes, M. G. F. J. Physiol., Lond. 207, 77–92 (1970).

    Article  CAS  Google Scholar 

  24. Brown, J. E. & Pinto, L. H. J. Physiol., Lond. 236, 575–591 (1974).

    Article  CAS  Google Scholar 

  25. Weight, F. F. in The Neurosciences: Third Study Program (eds Schmitt, F. O. & Worden, F. G.) 929–941 (MIT, Cambridge, Massachusettes, 1974).

    Google Scholar 

  26. Schulman, J. A. & Weight, F. F. Science 194, 1437–1439 (1976).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SMITH, P., WEIGHT, F. Role of electrogenic sodium pump in slow synaptic inhibition is re-evaluated. Nature 267, 68–70 (1977). https://doi.org/10.1038/267068a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/267068a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing