Letter | Published:

Ethanol reduces excitatory postsynaptic current duration at a crustacean neuromuscular junction

Naturevolume 266pages739741 (1977) | Download Citation

Subjects

Abstract

ETHANOL potentiates the postsynaptic voltage response to acetylcholine at mammalian and amphibian neuromuscular junctions1–4, by prolonging the duration of the postsynaptic conductance change5–7. At these synapses, hyperpolarisation also increases the time constant of decay (τ) of end-plate currents8–14. Because of this voltage sensitivity, it was proposed15 that the rate-limiting reaction in the decay of end-plate currents involves the relaxation of membrane proteins, which undergo a change in dipole moment normal to the field direction as they change conformation. The magnitude and direction of the change in dipole moment then determines the effect of electric field on α, the reaction rate, α ( = τ−1) would be proportional to exp () (ref. 15) where V is membrane potential and μ the dipole moment change normal to the field direction. It has been suggested that the prolonged decay of end-plate currents produced by ethanol is due to increase by ethanol of the dielectric constant of the environment of receptors6, which lowers the rate of reactions involving a decrease in dipole moment16 and hence increases τ. In some arthropods, including crayfish, crab and locust, there is evidence that glutamate acts as an excitatory transmitter at neuromuscular junctions17,18. Also, the decay of excitatory postsynaptic currents in crayfish19 and locusts20 has the opposite voltage sensitivity to that found at amphibian neuromuscular junctions: hyper-polarisation reduces τ, suggesting that the rate-limiting reaction in the decay of conductance at these ‘glutamate’ synapses could be associated with a change in dipole moment which is opposite to that seen at amphibian neuromuscular junctions. Ethanol could then have an opposite effect at these two types of synapse, and depress synaptic transmission at glutamate synapses. We report here results of our study of spontaneous miniature excitatory junctional currents (MEJCs) in the crab, which confirm this hypothesis.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Gage, P. W. J. Pharmac. exp. Ther. 150, 236–243 (1965).

  2. 2

    Inoue, F. & Frank, G. B. Br. J. Pharmac. 30, 186–193 (1967).

  3. 3

    Okada, K. Jap. J. Physiol. 17, 245–261 (1967).

  4. 4

    Okada, K. Jap. J. Physiol. 20, 97–111 (1970).

  5. 5

    McBurney, R. N. & Gage, P. W. Proc. Aust. physiol. pharmac. Soc. 3, 209 (1972).

  6. 6

    Gage, P. W., McBurney, R. N. & Schneider, G. T. J. Physiol., Lond. 244, 409–429 (1975).

  7. 7

    Quastel, D. M. J. & Linder, T. M. in Molecular Mechanisms of Anaesthesia (ed. Fink, B. R.) 1, 157–165 (Raven, New York, 1975).

  8. 8

    Takeuchi, A. & Takeuchi, N. J. Neurophysiol. 22, 395–411 (1959).

  9. 9

    Gage, P. W. & Armstrong, C. M. Nature 218, 363–365 (1968).

  10. 10

    Kordas, M. J. Physiol., Lond. 204, 493–502 (1969).

  11. 11

    Magleby, K. L. & Stevens, C. F. J. Physiol., Lond. 223, 151–171 (1972).

  12. 12

    Gage, P. W. & McBurney, R. N. J. Physiol., Lond. 225, 79–94 (1972).

  13. 13

    Gage, P. W. & McBurney, R. N. J. Physiol., Lond. 244, 385–407 (1975).

  14. 14

    Anderson, C. R. & Stevens, C. F. J. Physiol., Lond. 235, 655–691 (1973).

  15. 15

    Magleby, K. L. & Stevens, C. F. J. Physiol., Lond. 223, 173–197 (1972).

  16. 16

    Glasstone, S., Laidler, K. J., Eyring, H. The Theory of Rate Processes (McGraw-Hill, New York, 1941).

  17. 17

    Kravitz, E. A., Slater, C. R., Takahashi, K., Bownds, N. D. & Grossfeld, R. M. in Excitatory Synaptic Mechanisms (eds Andersen, P. & Jansen, J.) 85–94 (Universitetsforlaget, Oslo, 1970).

  18. 18

    Gerschenfeld, H. M. Physiol. Rev. 53, 1–119 (1973).

  19. 19

    Dudel, J. Pflügers Arch. 352, 227–241 (1974).

  20. 20

    Anderson, C. R., Cull-Candy, S. G. & Miledi, R. Nature 261, 151–153 (1976).

  21. 21

    Atwood, H. L., Hoyle, G. & Smyth, T. J. Physiol., Lond. 180, 449–482 (1965).

  22. 22

    Kordas, M. J. Physiol., Lond. 224, 317–332 (1972).

  23. 23

    Crawford, A. C. & McBurney, R. N. J. Physiol., Lond. 254, 47–48P (1976).

  24. 24

    Crawford, A. C. & McBurney, R. N. J. Physiol., Lond. 258, 205–226 (1976).

  25. 25

    Barker, J. L. Brain Res. 92, 35–55 (1975).

  26. 26

    Chase, R. Comp. Biochem. Physiol. 506, 37–40 (1975).

  27. 27

    Adams, D. J., Gage, P. W. & Hamill, O. P. Proc. Aust. Physiol. pharmac. Soc. 7, 71P (1976).

  28. 28

    Faber, D. S. & Klee, M. R. Brain Res. 104, 347–353 (1976).

  29. 29

    Eidelberg, E. & Wooley, D. F. Archs int. Pharmacodyn. Ther. 185, 388–396 (1970).

  30. 30

    Gage, P. W. & McBurney, R. N. J. Memb. Biol. 12, 247–272 (1973).

  31. 31

    Gage, P. W. & Hamill, O. P. Neurosci. Lett. 1, 61–65 (1975).

  32. 32

    Gage, P. W. & Hamill, O. P. Bri. J. Pharmac. 57, 263–272 (1976).

  33. 33

    Torda, T. A. & Gage, P. W. Anaesthesia and Intensive Care, 4, 199–202 (1976).

Download references

Author information

Affiliations

  1. School of Physiology & Pharmacology, University of New South Wales, Kensington, N.S.W., 2033, Australia

    • D. J. ADAMS
    • , P. W. GAGE
    •  & O. P. HAMILL

Authors

  1. Search for D. J. ADAMS in:

  2. Search for P. W. GAGE in:

  3. Search for O. P. HAMILL in:

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/266739a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.