Letter | Published:

High-LET radiations induce a large proportion of non-rejoining DNA breaks

Naturevolume 266pages653655 (1977) | Download Citation

Subjects

Abstract

THE mechanisms by which mammalian cells are killed by ionising radiation have not been explained at the molecular level and radiations with a high linear energy transfer (LET) can provide an important tool for investing these mechanisms. High-LET radiations, such as neutrons, π-mesons and low-energy heavy ions are known to kill bacteria1,2, yeast3,4, and mammalian cells in vitro5–9 more efficiently per unit dose than radiations with diffuse patterns of ionization, or low-LETs, such as γ or X rays. Other radiobiological phenomena associated with high-LET radiations are a reduced effect of chemical modifiers, for example, oxygen10, on cellular radiation sensitivity and reduction or loss of cellular ability to recover from radiation damage between split radiation doses5,8. Because of these and other attributes, including the favourable depth–dose distribution of heavy ions and π-mesons, high-LET radiations are being actively considered for use in cancer radiation therapy11,12, and a thorough understanding of their biological effects is necessary for them to be used to advantage clinically. We report here that, over an LET range of 1–1953 KeV µm−1, there is an excellent correlation between the efficiency of exponential (single-hit) cell killing and the induction of non-rejoining DNA strand breaks, as measured on alkaline sucrose gradients. This correlation implies that non-rejoined breaks are a cause of cell death.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Munson, R. J., Neary, G. J., Bridges, B. A. & Preston, R. J. Int. J. radiat. Biol. 13, 205–224 (1967).

  2. 2

    Powers, E. L., Lyman, J. T. & Tobias, C. A. Int. J. radiat. Biol. 14, 313–330 (1968).

  3. 3

    Sayeg, J. A., Birge, A. C., Beam, C. A. & Tobias, C. A. Radiat. Res. 10, 449–461 (1959).

  4. 4

    Manney, T. R., Brustad, T. & Tobias, C. A. Radiat. Res. 18, 374–388 (1963).

  5. 5

    Barendsen, G. W. Int. J. radiat. Biol. 8, 453–466 (1964).

  6. 6

    Deering, R. A. & Rice, R., Jr Radiat. Res. 17, 774–786 (1962).

  7. 7

    Skarsgard, L. D., Kihlman, B. A., Parker, L., Pujara, C. M. & Richardson, S. Radiat. Res. Suppl. 7, 208–221 (1967).

  8. 8

    Todd, P. Radiat. Res. Suppl. 7, 196–207 (1967).

  9. 9

    Raju, M. R., Gnanapurani, M. & Richman, C. Br. J. Radiol. 45, 178–181 (1972).

  10. 10

    Barendsen, G. W. in The Initial Effects of Ionizing Radiations on Cells (ed. Harris, R. J. C.) 183–194 (Academic, New York, 1961).

  11. 11

    Lawrence, J. & Tobias, C. in Mod. Trends Radiother. 1, 260–276 (1967).

  12. 12

    Tobias, C. A. & Todd, P. in National Cancer Institute Monograph 24, Conference on Radiobiology and Radiotherapy, 1–15 (US Department of Health, Education and Welfare, 1967).

  13. 13

    Sinclair, W. K. Cancer Res. 27, 297–308 (1967).

  14. 14

    Mortimer, R., Brustad, T. & Cormack, D. V. Radiat. Res. 26, 465–482 (1965).

  15. 15

    Puck, T. Prog. Biophys. biophys. Chem. 10, 237–258 (1960).

  16. 16

    Barendsen, G. W., Walter, H. M. D., Fowler, J. F. & Bewley, D. K. Radiat. Res. 18, 106–119 (1963).

  17. 17

    Chadwick, K. H. & Leenhouts, H. P. Phys. med. Biol. 18, 78–87 (1973).

  18. 18

    Todd, P. thesis, Univ. California, Berkeley (1964).

  19. 19

    Todd, P. W. Radiat. Res. 61, 288–297 (1975).

  20. 20

    Kapp, D. S. & Smith, K. C. J. Bact. 103, 49–54 (1970).

  21. 21

    Painter, R. B., Young, B. R. & Burki, H. J. Proc. natn. Acad. Sci. USA 71, 4836–4838 (1974).

  22. 22

    Cleaver, J. E., Thomas, G. H. & Burki, H. G. Science 177, 996–998 (1972).

  23. 23

    Burki, H. J., Roots, R., Feinendegen, L. E. & Bond, V. P. Int. J. radiat. Biol. 24, 363–375 (1973).

  24. 24

    Howard-Flanders, P. Adv. Biol. med. Phys. 6, 553–603 (1958).

  25. 25

    Christensen, R. C., Tobias, C. A. & Taylor, W. D. Int. J. radiat. Biol. 22, 457–477 (1972).

  26. 26

    Cole, A., Shonka, F., Corry, P. & Cooper, W. G. in Molecular Mechanisms for Repair of DNA (eds Hanawalt, P. C. & Setlow, R. B.) 665–676 (Plenum, New York, 1975).

  27. 27

    Ehmann, U. K. & Lett, J. T. Radiat. Res. 54, 152–162 (1973).

  28. 28

    Cleaver, J. E. in Meth. Cancer Res. 11, 123–165 (Academic, New York, 1975).

  29. 29

    Dugle, D. L., Gillespie, C. J. & Chapman, J. D. Proc. natn. Acad. Sci. USA 73, 809–812 (1976).

Download references

Author information

Author notes

    • MARK A. RITTER

    Present address: Department of Physiology, Harvard University, School of Public Health, Boston, Massachusetts, 02115

Affiliations

  1. Laboratory of Radiobiology, University of California, San Francisco, California, 94143

    • MARK A. RITTER
    •  & JAMES E. CLEAVER
  2. Donner Laboratory, University of California, Berkeley, California, 94720

    • CORNELIUS A. TOBIAS

Authors

  1. Search for MARK A. RITTER in:

  2. Search for JAMES E. CLEAVER in:

  3. Search for CORNELIUS A. TOBIAS in:

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/266653a0

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.