Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Possible relationship between glial cells, dopamine and the effects of antipsychotic drugs

Abstract

THE hypothesis that a functional excess of dopamine underlies many of the abnormalities seen in schizophrenia is receiving much attention. The supporting evidence is principally pharmacological. There is a correlation between antipsychotic drug action and the ability of a neuroleptic drug to block dopaminergic transmission1–3. The exact site of antipsychotic drug activity is not known and evidence for the presynaptic inhibition of dopamine release4, as well as the blockade of postsynaptic receptors5,6 has been presented to explain neuroleptic drug action. Studies of binding properties of the dopamine receptor, however, provide a coherent explanation of neuroleptic drug action. Butyrophenones, phenothiazines, thioxanines and diphenyl-butylpiperadines inhibit 3H-haloperidol binding to a central nervous system (CNS) membrane fraction in exactly the order of their clinical potency7–10: the inhibition occurs at drug concentrations similar to those expected in the CNS of patients taking these drugs. These results with 3H-haloperidol, a dopamine antagonist, are used to argue that neuroleptics bind to postsynaptic dopamine receptors, and are effective by decreasing the activity of pathways using dopamine as their neurotransmitter. On the other hand, dopamine-sensitive adenylate cyclase is associated with the postsynaptic receptors5,11, yet the inhibition of this enzyme by neuroleptic butyrophenones does not correlate with in vivo or clinical potency. The difference between butyrophenone inhibition of 3H-haloperidol binding and inhibition of adenylate cyclase has been attributed to “variable degrees of coupling of dopamine receptor sites with the adenylate cyclase”9. Alternatively, there could be several dopamine sensitive adenylate cyclases with differing binding affinities and localisations : this is suggested by the presence of this enzyme in several tissue culture lines of glia12. Lesion studies show that the enzyme is not localised presynaptically in the caudate nucleus13 or in the substantia nigra14. The only defined dopaminergic receptors in the substantia nigra are localised on dopaminergic neurones15, and the elimination of these cells as the site of the enzyme was established by unilateral injections of 6-hydroxydopamine which removed these cells14. It therefore seems necessary to define more exactly the site of the dopamine binding receptor and the dopamine-stimulated adenylate cyclase. We report here that a large proportion of CNS dopamine haloperidol binding sites seem to be present on glial membranes and may be associated with an adenylate cyclase localised on these membranes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Van Rossen, J. M. Archs int. Pharmacodyn. Thér 160, 492–494 (1966).

    Google Scholar 

  2. Matthysse, S. Fedn Proc. 32, 200–204 (1973).

    CAS  Google Scholar 

  3. Synder, S. H., Banerjee, S. P., Yamamura, H. I. & Greenberg, D. Science 184, 1243 (1974).

    Article  ADS  Google Scholar 

  4. Seeman, P. & Lee, T. Science 188, 1217–1219 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Kebabian, J. W., Petzold, G. L. & Greengard, P. Proc. natn. Acad. Sci U.S.A. 69 2145–2149 (1972).

    Article  ADS  CAS  Google Scholar 

  6. Burt, D. R., Enna, S. J., Creese, I. & Synder, S. H. Proc. natn. Acad. Sci. U.S.A. 72 4655–4659 (1975).

    Article  ADS  CAS  Google Scholar 

  7. Creese, I., Burt, D. R. & Synder, S. H. Life Sci. 17, 993–1002 (1975).

    Article  CAS  Google Scholar 

  8. Seeman, P., Chau-Wong, M., Tedesco, J. & Wong, K. Proc. natn. Acad. Sci. U.S.A. 72, 4376–4380 (1975).

    Article  ADS  CAS  Google Scholar 

  9. Creese, I., Burt, D. R. & Synder, S. H. Science 192, 481–483 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Seeman, P., Lee, T., Chau-Wong, M. & Wong, K. Nature 261, 717–718 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Iversen, L. K. Science 188, 1084–1088 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Schubert, D., Tarikas, H. & La Corbiere, M. Science 192, 471–472 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Misha, R. K. Gardner, E. L., Katzman, R. & Makman, H. Proc. natn. Acad. Sci. U.S.A 71, 3883–3887 (1974).

    Article  ADS  Google Scholar 

  14. Kebabian, J. W. & Saavedra, J. M. Science 193, 683–685 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Aghajanian, G. K. & Bunney, B. S. in Frontiers in Catecholamine Research (eds Usdin' E & Synder, S.) 643 (Pergamon, New York, 1973).

    Book  Google Scholar 

  16. Gray, E. G. & Whittaker, V. P. J. Anat. 96, 79–89 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Henn, F. A. & Hamberger, A. Neurochem. Res. 1, 261–273 (1976).

    Article  CAS  PubMed  Google Scholar 

  18. Henn, F. A., Anderson, D. J. & Rustad, D. G. Brain Res. 101, 341–344 (1976).

    Article  CAS  PubMed  Google Scholar 

  19. Fahn, S. in GABA in Nervous System Function (eds Roberts, E., Chase, T. & Tower, D) 172 (Raven, New York, 1976).

    Google Scholar 

  20. Wood, J. G., McLaughlin, B. & Vaughn, J. E. in GABA in Nervous system Function (eds Roberts, E., Chase, T. & Towers, D.) 143 (Raven, New York, 1976).

    Google Scholar 

  21. Roberts, E. & Simonsen, D. G. Biochem. Pharmac. 12, 113–134 (1963).

    Article  CAS  Google Scholar 

  22. Pfeiffer, S. E., Herschman, H. R., Lightbody, J. & Sato, G. J. Cell Physiol. 75, 329–340 (1970).

    Article  CAS  PubMed  Google Scholar 

  23. Gilman, A. G. Proc. natn. Acad. Sci. U.S.A. 67, 305–312 (1970).

    Article  ADS  CAS  Google Scholar 

  24. Bunge, R. P. in The Neurosciences Second Study Program (ed. Schmitt, O.) 782 (Rockefeller, New York, 1970).

    Google Scholar 

  25. Mayer, S. E. & Stull, J. T. Ann N.Y. Acad. Sci. 185, 433–443 (1971).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Andersson, R., Lundholm, L., Mohne-Lundholm, E. & Nilsson, K. in Adv. Cyclic Nucleotide Res. (eds Greengard, P. & Robison, G. A.) 213–229 (Raven, New York, 1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HENN, F., ANDERSON, D. & SELLSTRÖM, Å. Possible relationship between glial cells, dopamine and the effects of antipsychotic drugs. Nature 266, 637–638 (1977). https://doi.org/10.1038/266637a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/266637a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing