Letter | Published:

Production of ‘prompt’ nitric oxide and decomposition of hydrocarbons in flames

Naturevolume 266pages524525 (1977) | Download Citation

Subjects

Abstract

THE pollutant nitric oxide originates in combustion systems from nitrogen in the air or the fuel. Two processes have been identified whereby atmospheric N2 produces NO. The Zel'dovich1 mechanism has the rate-determining step O+N2→N+NO and is affected by oxygen atoms having concentrations2,3 above those for equilibrium. Fenimore's ‘prompt’ scheme4 is an attack on N2 by some hydrocarbon fragment with a lifetime of several µs in the flame's reaction zone5. Probable6 primary steps are The oxidation of HCN and CN to NO has been discussed elsewhere6,7. We have burnt premixed H2–O2–N2 flames and measured the ‘prompt’ NO resulting from trace additions of hydrocarbons to the burner supplies. We found that ‘prompt’ NO yield is proportional to the number of carbon atoms in the hydrocarbon molecule. We consider that the hydrocarbons fragment into species with one carbon atom, in, or close to, the preheating region. Thus formation of ‘prompt’ NO, soot, ions in flames, and CH radiation from hydrocarbons all show related behaviour.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Zel'dovich, Ya. B. Acta Phys. Chim. USSR 21, 577 (1946).

  2. 2

    Bulewicz, E. M., James, C. G. & Sugden, T. M. Proc. R. Soc. A235, 89 (1956).

  3. 3

    Bulewicz, E. M. & Sugden, T. M. Chem. Soc. Spec. Publ. No. 9, 81 (1958).

  4. 4

    Fenimore, C. P. 13th Int. Symp. Combust. 373 (1971).

  5. 5

    Gaydon, A. G. & Wolfhard, H. G. Flames, their Structure, Radiation and Temperature 3rd edn (Chapman and Hall, London, 1970).

  6. 6

    Hayhurst, A. N. & McLean, H. A. G. Nature 251, 303 (1974).

  7. 7

    Morley, C. Combust. Flame 27, 189 (1976).

  8. 8

    Padley, P. J. & Sugden, T. M. Proc. R. Soc. A, 248, 248 (1958).

  9. 9

    Padley, P. J. thesis, Univ. Cambridge (1959).

  10. 10

    Jenkins, D. R. & Sugden, T. M. Flame Emission and Atomic Absorption Spectrometry 1 (eds Dean, J. A. & Rains, T. C.) 151 (Dekker, New York, 1959).

  11. 11

    JANAF Thermochemical Tables 2nd edn (Nat. Bur. Stds, Washington, 1970).

  12. 12

    Bradley, J. N. & West, K. O. J. chem. Soc. Faraday Trans. I, 72, 8 (1976); Bradley, J. N. Proc. R. Soc. A, 337, 199 (1974).

  13. 13

    Braun, W., McNesby, J. R. & Bass, A. M. J. chem. Phys. 46, 2071 (1967).

  14. 14

    Ferguson, R. E. Combust. Flame 1, 431 (1957).

  15. 15

    Bulewicz, E. M. & Padley, P. J. 9th Int. Symp. Combust. 638 (1963).

  16. 16

    Green, J. A. & Sugden, T. M. 9th Int. Symp. Combust. 607 (1963).

  17. 17

    Blades, A. T. Can. J. Chem. 54, 2919 (1976) and references therein.

  18. 18

    Peeters, J., Lambert, J. F., Hertoghe, P. & Van Tiggelen, A. 13th Int. Symp. Combust. 321 (1971).

Download references

Author information

Affiliations

  1. Department of Chemical Engineering and Fuel Technology, University of Sheffield, Mappin Street, Sheffield, UK

    • A. N. HAYHURST
    •  & I. M. VINCE

Authors

  1. Search for A. N. HAYHURST in:

  2. Search for I. M. VINCE in:

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/266524a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.