Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Enzyme hydration may explain catalytic efficiency differences among lactate dehydrogenase homologues

Abstract

HOMOLOGOUS enzymes of species with different cell temperatures usually display temperature-adaptive differences in their catalytic properties1–7. Thus enzymes of low cell temperature species characteristically exhibit higher specific activities and lower activation free energies and enthalpies than the homologous enzymes of high cell temperature species2–7. For lactate dehydrogenase (LDH, E.G. 1.1.1.27; lactate: NAD+ oxidoreductase), a single M4 (muscle type) LDH molecule from a cold-water fish can catalyse the conversion of pyruvate to lactate three times as rapidly at 5 °C as an M4-LDH from a mammal5. In this paper we present evidence that these temperature-compensating differences in catalytic efficiency may derive in part from different amounts of exergonic hydration of the enzymes during the activation step in catalysis. Lowering the activation free energy (ΔG‡) ‘barriers’ to enzymic reactions by way of the reversible hydration of amino acid side chains and/or polar peptide linkages permits the adjustment of catalytic efficiencies without necessitating the modification of amino acid sequences in the active sites of the enzymes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hochachka, P. W. & Somero, G. N. Strategies of Biochemical Adaptation Saunders, Philadelphia, 1973).

    Google Scholar 

  2. Somero, G. N. & Low, P. S. in Biochemical Adaptation to Environmental Change, Biochemical Society Symposium No. 41, (eds Smellie, R. M. S. & Pennock, J. F.) 33–42 (Biochemical Society, London, 1976).

    Google Scholar 

  3. Somero, G. N. J. exp. Zool. 194, 175–188 (1975).

    Article  CAS  Google Scholar 

  4. Low, P. S. & Somero, G. N. J. exp. Zool. 198, 1–12 (1976).

    Article  CAS  Google Scholar 

  5. Low, P. S., Bada, J. L. & Somero, G. N. Proc. natn. Acad. Sci. U.S.A. 70, 430–432 (1973).

    Article  ADS  CAS  Google Scholar 

  6. Johnston, I. A. & Goldspink, G. Nature 257, 620–623 (1975).

    Article  ADS  CAS  Google Scholar 

  7. Borgmann, U. & Moon, T. W. Can. J. Biochem. 53, 998–1004 (1975).

    Article  CAS  Google Scholar 

  8. Taylor, S. S. & Oxley, S. S. Archs Biochem. Biophys. 175, 373–383 (1976).

    Article  CAS  Google Scholar 

  9. Perham, R. N. Biochem. J. 111, 17–21 (1969).

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Ting, S., Lai, C. Y. & Horecker, B. L. Archs Biochem. Biophys. 144, 476–484 (1971).

    Article  CAS  Google Scholar 

  11. Low, P. S. & Somero, G. N. Proc. natn. Acad. Sci. U.S.A. 72, 3305–3309 (1975).

    Article  ADS  CAS  Google Scholar 

  12. Koshland, D. E. & Neet, K. E. A. Rev. Biochem. 37, 359–410 (1968).

    Article  CAS  Google Scholar 

  13. Low, P. S. & Somero, G. N. Proc. natn. Acad. Sci. U.S.A. 72, 3014–3018 (1975).

    Article  ADS  CAS  Google Scholar 

  14. Johnson, F. H., Eyring, H. & Polissar, M. J. in Kinetic Basis of Molecular Biology, 1–41, (Wiley, New York, 1954).

    Google Scholar 

  15. Von Hippel, P. H. & Schleich, T. in Structure and Stability of Biological Macromolecules (eds Timesheff, S. N. & Fasman, G. D.) 417–574 (Dekker, New York, 1969).

    Google Scholar 

  16. Somero, G. N. & Low, P. S. Am. Nat. (in press).

  17. Banerjee, S. K. & Rupley, J. A. J. biol. Chem. 248, 2117–2124 (1973).

    PubMed  CAS  Google Scholar 

  18. Krishnan, C. V. & Friedman J. phys. Chem. 73, 1572–1580 (1969); 75, 3598–3606 (1971).

    Article  CAS  Google Scholar 

  19. Pesce, A., Fondy, T. P., Stolzenbach, F., Castillo, F. & Kaplan, N. O. J. biol. Chem. 242, 2151–2167 (1967).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SOMERO, G., LOW, P. Enzyme hydration may explain catalytic efficiency differences among lactate dehydrogenase homologues. Nature 266, 276–278 (1977). https://doi.org/10.1038/266276a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/266276a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing