Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cell lineage analysis of germ cells of Drosophila melanogaster


THE initial events of differentiation of genetically identical nuclei within the eggs of higher organisms are generally believed to be triggered by a heterogeneous distribution of substances within the egg1,2. One of the clearest examples of such differential distribution of determinative substances concerns the posterior polar plasm of some insects. Morphological observations suggest that all cleavage nuclei in such insects have identical developmental potential, and that only the few nuclei that chance to migrate to the posterior polar region and thus to include a sufficient quantity of the morphologically distinguishable polar plasm, acquire the capacity to give rise to the germ line3. Various experimental approaches4–8 have provided very strong, although not compelling 9 evidence for such a causal relationship between the polar plasm and germ line differentiation. Genetic fate mapping experiments described here strongly suggest that the germ cells of Drosophila melanogaster originate from the posterior-most region of the blastoderm, and they unequivocally rule out the possibility that the germ cells originate from a mid-dorsal position10. The posterior-most location of the germ cells supports, or at least is consistent with, the notion that the polar plasm determines whether or not a given cleavage nucleus will acquire the capacity to differentiate into a germ cell.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout


  1. Davidson, E. H. Gene Activity in Early Development (Academic, New York, 1968).

    Google Scholar 

  2. Gurdon, J. B. & Woodland, H. R. Biol. Rev. Cambridge phil. Soc. 43, 233–267 (1968).

    Article  CAS  Google Scholar 

  3. Huettner, A. F. J. Morph. 37, 385–423 (1923).

    Article  Google Scholar 

  4. Illmensee, K. Mahowald, A. P. Proc. natn. Acad. Sci. USA. 71, 1016–1020 (1974).

    Article  ADS  CAS  Google Scholar 

  5. Geigy, R. Rev. Suisse Zool. 38, 187–288 (1931).

    Article  Google Scholar 

  6. Okada, M., Kleinman, I. A. & Schneiderman, H. A. Devl Biol. 37, 43–54 (1974).

    Article  CAS  Google Scholar 

  7. Illmensee, K., Mahowald, A. P. & Loomis, M. R. Devl Biol. 49, 40–65 (1976).

    Article  CAS  Google Scholar 

  8. Gehring, W. J., Wieschaus, E. & Holliger, M. J. Embryol. exp. Morph 35, 607–616 (1976).

    CAS  PubMed  Google Scholar 

  9. Eddy, E. M. Int. Rev. Cytol. 43, 229–280 (1975).

    Article  CAS  Google Scholar 

  10. Falk, R., Orevi, N. & Menzl, B. Nature new Biol. 246, 19–20 (1973).

    Article  CAS  Google Scholar 

  11. Garcia-Bellido, A. & Merriam, J. R. J. exp. Zool. 170, 61–76 (1969).

    Article  CAS  Google Scholar 

  12. Hotta, Y. & Benzer, S. Nature 240, 527–535 (1972).

    Article  ADS  CAS  Google Scholar 

  13. Poulson, D. F. & Waterhouse, D. F. Aust. J. biol. Sci. 13, 541–567 (1960).

    Article  Google Scholar 

  14. Achtelig, M. & Krause, G. Wilhelm Roux Archiv. 167, 164–182 (1971).

    Article  Google Scholar 

  15. Günther, J. Zool. Jb. (Anat.) 88, 1–46 (1971).

    Google Scholar 

  16. Janning, W. Wilhelm Roux Archiv. 174, 349–359 (1974).

    Article  Google Scholar 

  17. Hotta, Y. & Benzer, S. in Genetic Mechanisms of Development (ed Ruddle, F. H.) (Academic, New York, 1973).

    Google Scholar 

  18. Bryant, P. J. & Zornetzer, M. Genetics 75, 627–637 (1973).

    Google Scholar 

  19. Gelbart, W. M. Genetics 76, 51–63 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Baker, B. S. Genetics 80, 267–296 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nissani, M. Genet. Res. 26, 63–72 (1975).

    Article  CAS  Google Scholar 

  22. Kankel, D. R. & Hall, J. C. Devl Biol. 48, 1–24 (1976).

    Article  CAS  Google Scholar 

  23. Deak, I. J. Insect Physiol. 22, 1159–1165 (1976).

    Article  CAS  Google Scholar 

  24. Nissani, M. J. exp. Zool. 192, 271–275 (1975).

    Article  CAS  Google Scholar 

  25. Counce, S. J. in Developmental Systems: Insects 2, (ed. Counce, S. J. & Waddington, C. H.) (Academic, New York, 1973).

    Google Scholar 

  26. Dobzhansky, T. Wilhelm Roux Archiv. 123, 719–746 (1931).

    Article  CAS  Google Scholar 

  27. Lindsley, D. L. & Greel, E. H. Genetic variations of Drosophila melanogaster, Carnegie Instituion Publication, 627 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

NISSANI, M. Cell lineage analysis of germ cells of Drosophila melanogaster. Nature 265, 729–731 (1977).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing