Isometric contractile properties of single isolated smooth muscle cells

Abstract

THE use of multicellular strips to study contractile properties of smooth muscle cells rests on the assumption that properties of individual cells are directly reflected in the behaviour of whole tissues. Both the heterogeneity of the contractile state of the cell population in the intact strip, and the complex interconnections between cells and extracellular fibrous elements, however, must influence measured mechanical properties. Methods for isolating viable single smooth muscle fibres from the stomach of the toad, Bufo marinus1,2 now make it possible to make direct measurements of force generation in single cells. I report here a technique for isometrically measuring the force of contraction of a single isolated smooth muscle cell. The method was used to investigate the kinetics and magnitude of force development in a single smooth muscle cell. The results reveal that the maximum force per cm2 of a single cell is comparable with that of whole tissue. The onset of active force development after stimulation is exceptionally slow. Analysis of this delay suggests that it resides in step(s), perhaps unique to smooth muscle, whereby Ca2+ activates the contractile machinery.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Bagby, R. M., Young, A. M., Dotson, R. S., Fisher, B. A., and McKinnon, K., Nature, 234, 351–352 (1971).

  2. 2

    Fay, F. S., and Delise, C. M., Proc. natn. Acad. Sci. U.S.A., 70, 641–645 (1973).

  3. 3

    Singer, J. J., and Fay, F. S., Am. J. Physiol., (in the press).

  4. 4

    Canaday, P. G., and Fay, F. S., J. appl. Physiol., 40, 243–246 (1976).

  5. 5

    Bagby, R. M., and Fisher, B. A., Am. J. Physiol., 225, 105–109 (1973).

  6. 6

    Herlihy, J. T., and Murphy, R. A., Circulat. Res., 33, 275–283 (1973).

  7. 7

    Mulvany, M. J., and Halpern, W., Nature, 260, 617–619 (1976).

  8. 8

    Gordon, A. M., Huxley, A. F., and Julian, F. J., J. Physiol., 184, 170–192 (1966).

  9. 9

    Murphy, R. A., Herlihy, J. T., and Megerman, J., J. gen. Physiol., 64, 691–705 (1974).

  10. 10

    Ashton, F. T., Somlyo, A. V., and Somlyo, A. P., J. molec. Biol., 97, 17–29 (1975).

  11. 11

    Fay, F. S., Cooke, P. J., and Canaday, P. G., in Physiology of Smooth Muscle, (edit. by Bulbring, E., and Shuba, M. F.), 249–264 (Raven, New York, 1976).

  12. 12

    Fisher, B. A., and Bagby, R. M., Fedn Proc., 33, 435 (1974).

  13. 13

    Small, J. V., Nature, 249, 324 (1974).

  14. 14

    Rosenblueth, J., Science, 148, 1337–1339 (1965).

  15. 15

    Fay, F. S., INSERM, 16–18 July, 1975, 50, 327–342 (1975).

  16. 16

    Sandow, A., and Preiser, H., Science, 146, 1470–1472 (1964).

  17. 17

    Morad, M., and Goldman, Y., Prog. Biophys. molec. Biol., 27, 257–313 (1973).

  18. 18

    Mironneau, J., J. Physiol., 233, 127–141 (1973).

  19. 19

    Huxley, A. F., and Simmons, R. M., Nature, 233, 533–538 (1971).

  20. 20

    Huxley, A. F., and Simmons, R. M., Cold Spring Harb. Symp. quant. Biol., 37, 669–683 (1972).

  21. 21

    Julian, F. J., and Sollins, M. R., J. gen. Physiol., 66, 287–302 (1975).

  22. 22

    Civan, M. M., and Podolsky, R. J., J. Physiol., 184, 511–534 (1966).

  23. 23

    Ford, L. E., Huxley, A. F., and Simmons, R. M., J. Physiol., 240, 42P–43P (1974).

  24. 24

    Seidel, C. L., and Murphy, R. A., Blood Vessels, 13, 78–91 (1976).

  25. 25

    Hill, A. V., Proc. R. Soc., B 135, 446–453 (1948).

  26. 26

    Morad, M., and Okrand, R. K., J. Physiol., 219, 167–189 (1971).

  27. 27

    Bremel, R. D., Nature, 252, 405–407 (1974).

  28. 28

    Sobieszek, A., and Bremel, R. D., Eur. J. Biochem., 55, 49–60 (1975).

  29. 29

    Sobiesezek, A., and Small, J. V., J. molec. Biol., 102, 75–92 (1976).

  30. 30

    Aksoy, M. O., Williams, D., Sharkey, E. M., and Hartshorne, D. J., Biochem. biophys. Res. Commun., 69, 35–41 (1976).

  31. 31

    Wakabayashi, T., Huxley, H. E., Amos, L. A., and Klug, A., J. molec. Biol., 93, 477–497 (1975).

  32. 32

    Wakabayashi, T., and Ebashi, S., J. Biochem., 64, 731–732 (1968).

  33. 33

    Ebashi, S., Endo, M., and Ohtsuki, I., O. Rev. Biophys., 2, 354–384 (1971).

  34. 34

    Huxley, H. E., Biochem. J., 125, 85P (1971).

  35. 35

    Weber, A., and Murray, J. M., Physiol. Rev., 53, 612–673 (1973).

  36. 36

    Honeyman, T. H., and Fay, F. S., Fedn Proc., 34, 361 (1975).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

FAY, F. Isometric contractile properties of single isolated smooth muscle cells. Nature 265, 553–556 (1977). https://doi.org/10.1038/265553a0

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.