Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Isometric contractile properties of single isolated smooth muscle cells

Abstract

THE use of multicellular strips to study contractile properties of smooth muscle cells rests on the assumption that properties of individual cells are directly reflected in the behaviour of whole tissues. Both the heterogeneity of the contractile state of the cell population in the intact strip, and the complex interconnections between cells and extracellular fibrous elements, however, must influence measured mechanical properties. Methods for isolating viable single smooth muscle fibres from the stomach of the toad, Bufo marinus1,2 now make it possible to make direct measurements of force generation in single cells. I report here a technique for isometrically measuring the force of contraction of a single isolated smooth muscle cell. The method was used to investigate the kinetics and magnitude of force development in a single smooth muscle cell. The results reveal that the maximum force per cm2 of a single cell is comparable with that of whole tissue. The onset of active force development after stimulation is exceptionally slow. Analysis of this delay suggests that it resides in step(s), perhaps unique to smooth muscle, whereby Ca2+ activates the contractile machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bagby, R. M., Young, A. M., Dotson, R. S., Fisher, B. A., and McKinnon, K., Nature, 234, 351–352 (1971).

    Article  ADS  CAS  Google Scholar 

  2. Fay, F. S., and Delise, C. M., Proc. natn. Acad. Sci. U.S.A., 70, 641–645 (1973).

    Article  ADS  CAS  Google Scholar 

  3. Singer, J. J., and Fay, F. S., Am. J. Physiol., (in the press).

  4. Canaday, P. G., and Fay, F. S., J. appl. Physiol., 40, 243–246 (1976).

    Article  CAS  Google Scholar 

  5. Bagby, R. M., and Fisher, B. A., Am. J. Physiol., 225, 105–109 (1973).

    CAS  PubMed  Google Scholar 

  6. Herlihy, J. T., and Murphy, R. A., Circulat. Res., 33, 275–283 (1973).

    Article  CAS  Google Scholar 

  7. Mulvany, M. J., and Halpern, W., Nature, 260, 617–619 (1976).

    Article  ADS  CAS  Google Scholar 

  8. Gordon, A. M., Huxley, A. F., and Julian, F. J., J. Physiol., 184, 170–192 (1966).

    Article  CAS  Google Scholar 

  9. Murphy, R. A., Herlihy, J. T., and Megerman, J., J. gen. Physiol., 64, 691–705 (1974).

    Article  CAS  Google Scholar 

  10. Ashton, F. T., Somlyo, A. V., and Somlyo, A. P., J. molec. Biol., 97, 17–29 (1975).

    Article  Google Scholar 

  11. Fay, F. S., Cooke, P. J., and Canaday, P. G., in Physiology of Smooth Muscle, (edit. by Bulbring, E., and Shuba, M. F.), 249–264 (Raven, New York, 1976).

    Google Scholar 

  12. Fisher, B. A., and Bagby, R. M., Fedn Proc., 33, 435 (1974).

    Google Scholar 

  13. Small, J. V., Nature, 249, 324 (1974).

    Article  ADS  CAS  Google Scholar 

  14. Rosenblueth, J., Science, 148, 1337–1339 (1965).

    Article  ADS  Google Scholar 

  15. Fay, F. S., INSERM, 16–18 July, 1975, 50, 327–342 (1975).

    Google Scholar 

  16. Sandow, A., and Preiser, H., Science, 146, 1470–1472 (1964).

    Article  ADS  CAS  Google Scholar 

  17. Morad, M., and Goldman, Y., Prog. Biophys. molec. Biol., 27, 257–313 (1973).

    Article  Google Scholar 

  18. Mironneau, J., J. Physiol., 233, 127–141 (1973).

    Article  CAS  Google Scholar 

  19. Huxley, A. F., and Simmons, R. M., Nature, 233, 533–538 (1971).

    Article  ADS  CAS  Google Scholar 

  20. Huxley, A. F., and Simmons, R. M., Cold Spring Harb. Symp. quant. Biol., 37, 669–683 (1972).

    Article  Google Scholar 

  21. Julian, F. J., and Sollins, M. R., J. gen. Physiol., 66, 287–302 (1975).

    Article  CAS  Google Scholar 

  22. Civan, M. M., and Podolsky, R. J., J. Physiol., 184, 511–534 (1966).

    Article  CAS  Google Scholar 

  23. Ford, L. E., Huxley, A. F., and Simmons, R. M., J. Physiol., 240, 42P–43P (1974).

    CAS  PubMed  Google Scholar 

  24. Seidel, C. L., and Murphy, R. A., Blood Vessels, 13, 78–91 (1976).

    CAS  PubMed  Google Scholar 

  25. Hill, A. V., Proc. R. Soc., B 135, 446–453 (1948).

    Article  ADS  Google Scholar 

  26. Morad, M., and Okrand, R. K., J. Physiol., 219, 167–189 (1971).

    Article  CAS  Google Scholar 

  27. Bremel, R. D., Nature, 252, 405–407 (1974).

    Article  ADS  CAS  Google Scholar 

  28. Sobieszek, A., and Bremel, R. D., Eur. J. Biochem., 55, 49–60 (1975).

    Article  CAS  Google Scholar 

  29. Sobiesezek, A., and Small, J. V., J. molec. Biol., 102, 75–92 (1976).

    Article  Google Scholar 

  30. Aksoy, M. O., Williams, D., Sharkey, E. M., and Hartshorne, D. J., Biochem. biophys. Res. Commun., 69, 35–41 (1976).

    Article  CAS  Google Scholar 

  31. Wakabayashi, T., Huxley, H. E., Amos, L. A., and Klug, A., J. molec. Biol., 93, 477–497 (1975).

    Article  CAS  Google Scholar 

  32. Wakabayashi, T., and Ebashi, S., J. Biochem., 64, 731–732 (1968).

    Article  CAS  Google Scholar 

  33. Ebashi, S., Endo, M., and Ohtsuki, I., O. Rev. Biophys., 2, 354–384 (1971).

    Google Scholar 

  34. Huxley, H. E., Biochem. J., 125, 85P (1971).

    Article  CAS  Google Scholar 

  35. Weber, A., and Murray, J. M., Physiol. Rev., 53, 612–673 (1973).

    Article  CAS  Google Scholar 

  36. Honeyman, T. H., and Fay, F. S., Fedn Proc., 34, 361 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

FAY, F. Isometric contractile properties of single isolated smooth muscle cells. Nature 265, 553–556 (1977). https://doi.org/10.1038/265553a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/265553a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing