Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An analgesia circuit activated by cannabinoids


Although many anecdotal reports indicate that marijuana and its active constituent, delta-9-tetrahydrocannabinol (delta-9-THC), may reduce pain sensation1,2, studies of humans have produced inconsistent results3,4,5,6. In animal studies, the apparent pain-suppressing effects of delta-9-THC and other cannabinoid drugs7,8,9,10,11,12 are confounded by motor deficits13,14. Here we show that a brainstem circuit that contributes to the pain-suppressing effects of morphine15 is also required for the analgesic effects of cannabinoids. Inactivation of the rostral ventromedial medulla (RVM) prevents the analgesia but not the motor deficits produced by systemically administered cannabinoids. Furthermore, cannabinoids produce analgesia by modulating RVM neuronal activity in a manner similar to, but pharmacologically dissociable from, that of morphine. We also show that endogenous cannabinoids tonically regulate pain thresholds in part through the modulation of RVM neuronal activity. These results show that analgesia produced by cannabinoids and opioids involves similar brainstem circuitry and that cannabinoids are indeed centrally acting analgesics with a new mechanism of action.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Inactivation of the RVM with microinjection of muscimol prevents the antinociception produced by the cannabinoid agonist WIN55,212-2.
Figure 2: Cannabinoid-induced motor impairments are not affected by inactivation of the RVM with muscimol.
Figure 3: Systemic cannabinoids reduce the ‘off’ cell pause and ‘on’ cell burst of RVM neurons, and eliminate the tail-flick reflex in a manner similar to morphine.
Figure 4: The cannabinoid receptor antagonist SR141716A decreases ‘off’ cell activity, increases ‘on’ cell activity and produces hyperalgesia.


  1. 1

    Mikuriya, T. H. Marijuana: Medical Papers 1839–1972. (Medi-Comp Press, Oakland, California, (1973)).

    Google Scholar 

  2. 2

    Dunn, M. & Davis, R. The perceived effects of marijuana on spinal cord injured males. Paraplegia 12, 175 (1974).

    CAS  PubMed  Google Scholar 

  3. 3

    Noyes, R., Brunk, S. F., Avery, D. H. & Canter, A. The analgesic properties of delta-9-tetrahydrocannabinol and codeine. Clin. Pharmacol. Ther. 18, 84–89 (1975).

    Article  PubMed  Google Scholar 

  4. 4

    Clark, W. C., Janal, M. N., Zeidenberg, P. & Nahas, G. G. Effects of moderate and high doses of marihuana on thermal pain: a sensory decision theory analysis. J. Clin. Pharmacol. 21 (Suppl.), 299–310 (1981).

    Article  Google Scholar 

  5. 5

    Libman, E. & Stern, M. H. The effects of delta-9-THC on cutaneous sensitivity and its relation to personality. Person. Indiv. Diff. 6, 169–174 (1985).

    Article  Google Scholar 

  6. 6

    Holdcroft, A. et al. Pain relief with oral cannabinoids in familial Mediterranean fever. Anaesthesia 52, 483–488 (1997).

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Buxbaum, D., Sanders-Bush, E. & Efron, D. Analgesic activity of tetrahydrocannabinol (THC) in the rat and mouse. Fed. Proc. 28, 735 (1969).

    Google Scholar 

  8. 8

    Sofia, R. D., Nalepa, S. D., Harakel, J. J. & Vassar, H. B. Anti-edema and analgesic properties of delta-9-tetrahydrocannabinol (THC). J. Pharmacol. Exp. Ther. 186, 646–655 (1973).

    CAS  PubMed  Google Scholar 

  9. 9

    Moss, D. E. & Johnson, R. L. Tonic analgesic effects of delta-9-tetrahydrocannabinol as measured with the formalin test. Eur. J. Pharmacol. 61, 313–315 (1980).

    CAS  Article  PubMed  Google Scholar 

  10. 10

    Lichtman, A. H. & Martin, B. R. Cannabinoid-induced antinociception is mediated by a spinal α-noradrenergic mechanism. Brain Res. 559, 309–314 (1991).

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Martin, W. J., Hohmann, A. G. & Walker, J. M. Suppression of noxious stimulus-evoked activity in the ventral posterolateral nucleus of the thalamus by a cannabinoid agonist: correlation between electrophysiological and antinociceptive effects. J. Neurosci. 16, 6601–6611 (1996).

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Herzberg, U., Eliav, E., Bennett, G. J. & Kopin, I. J. The analgesic effects of R(+)-WIN 55,212-2 mesylate, a high affinity cannabinoid agonist, in a rat model of neuropathic pain. Neurosci. Lett. 221, 157–160 (1997).

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Gough, A. L. & Olley, J. E. Delta-9-tetrahydrocannabinol and the extrapyramidal system. Psychopharmacol. 54, 87–99 (1977).

    CAS  Article  Google Scholar 

  14. 14

    Ueki, S. Abnormal behavior induced by delta-9-tetrahydrocannabinol. Trends Pharmacol. Sci. 1, 126–129 (1980).

    CAS  Article  Google Scholar 

  15. 15

    Mitchell, J. M., Lowe, D. & Fields, H. L. The contribution of the rostral ventromedial medulla to the antinoceceptive effects of systemic morphine in restrained and unrestrained rats. Neuroscience 87, 123–133 ((1998)).

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A. C. & Bonner, T. I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346, 561–564 (1990).

    ADS  CAS  Article  PubMed  Google Scholar 

  17. 17

    Munro, S., Thomas, K. L. & Abu-Shaar, M. Molecular characterization of a peripheral receptor for cannabinoids. Nature 365, 61–65 (1993).

    ADS  CAS  Article  PubMed  Google Scholar 

  18. 18

    Devane, W. A. et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 1946–1949 (1992).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Stella, N., Schweitzer, P. & Piomelli, D. Asecond endogenous cannabinoid that modulates long-term potentiation. Nature 388, 773–778 (1997).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    Rinaldi-Carmona, M. et al. SR 14176A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett. 350, 240–244 (1994).

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Tsou, K., Brown, S., Sanudo-Pena, M. C., Mackie, K. & Walker, J. M. Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience 83, 393–411 (1998).

    CAS  Article  Google Scholar 

  22. 22

    Basbaum, A. I. & Fields, H. L. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu. Rev. Neurosci. 7, 309–338 (1984).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Martin, W. J., Tsou, K. & Walker, J. M. Cannabinoid receptor-mediated inhibition of the rat tail-flick reflex after microinjection into the rostral ventromedial medulla. Neurosci. Lett. 242, 33–36 (1998).

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Fields, H. L., Vanegas, H., Hentall, I. D. & Zorman, G. Evidence that disinhibition of brain stem neurones contributes to morphine analgesia. Nature 306, 684–686 (1983).

    ADS  CAS  Article  PubMed  Google Scholar 

  25. 25

    Fields, H. L., Malick, A. & Burstein, R. Dorsal horn projection targets of ON and OFF cells in the rostral ventromedial medulla. J. Neurophys. 74, 1742–1759 (1995).

    CAS  Article  Google Scholar 

  26. 26

    Heinricher, M. M., Morgan, M. M. & Fields, H. L. Direct and indirect actions of morphine on medullary neurons that modulate nociception. Neuroscience 48, 533–543 (1992).

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Pan, Z. Z. & Fields, H. L. Endogenous opioid-mediated inhibition of putative pain-modulating neurons in rat rostral ventromedial medulla. Neuroscience 74, 855–862 (1996).

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Roychowdhury, S. M. & Fields, H. L. Endogenous opioids acting at a medullary µ-opioid receptor contribute to the behavioral antinociception produced by GABA antagonism in the midbrain periaqueductal gray. Neuroscience 74, 863–872 (1996).

    CAS  Article  PubMed  Google Scholar 

  29. 29

    Richardson, J. D., Aanonsen, L. & Hargreaves, K. M. Hypoactivity of the spinal cannabinoid system results in NMDA-dependent hyperalgesia. J. Neurosci. 18 ((1998)).

  30. 30

    Cadas, H., di Tomaso, E. & Piomelli, D. Occurrence and biosynthesis of endogenous cannabinoid precursor, N-arachidonoyl phosphatidylethanolamine, in rat brain. J. Neurosci. 17, 1226–1242 (1997).

    CAS  Article  PubMed  Google Scholar 

  31. 31

    Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Academic Press, New York, (1986)).

    Google Scholar 

Download references


This work was supported by the National Institute of Drug Abuse, the UCSF Center for the Neurobiology of Addiction and the Canadian MRC.

Author information



Corresponding author

Correspondence to Ian D. Meng.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Meng, I., Manning, B., Martin, W. et al. An analgesia circuit activated by cannabinoids. Nature 395, 381–383 (1998).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing