Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Incision of ultraviolet-irradiated DNA by extracts of E. coli requires three different gene products

Abstract

IN most organisms pyrimidine dimers induced in DNA by ultraviolet light are removed by excision which is initiated by a repair-specific endonuclease that recognises the damage and makes a strand incision adjacent to the dimer1–4. Characterisation of excision-defective mutants of Escherichia coli has shown that in this organism early steps of repair are controlled by the uvrA, uvrB and uvrC genes5. Although uvrA and uvrB mutants seem to be incision defective in vivo6,7, it has not been possible to measure any difference in the amount of ultraviolet-endonuclease activity between crude extracts from mutants and wild-type cells8,9. After partial purification of wild-type or uvrC mutant extracts, however, an ultraviolet endonuclease has been identified which is absent from uvrA and uvrB cells9 (in this communication termed the uvrAB endonuclease). The relevance of these results to whole cells is unclear, because recent experiments with permeable cells have shown that uvrA+B+-dependent strand incision requires adenosine-5′-triphosphate (ATP)10–12, whereas the uvrAB endonuclease is independent of ATP2. The aim of the present investigation was to observe ATP-dependent ultraviolet-endonuclease activity in a cell-free system. We report here the characterisation in crude extracts of an ATP-dependent ultraviolet-endonuclease activity from E. coli and conclude that the activity reflects that the enzyme is essential for repair in whole cells. The activity requires the complementary action of the uvrA+ uvrB+ and uvrC+ products and this has been utilised to establish in vitro assays for the individual products of these genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Setlow, R. B., and Carrier, W. L., Proc. natn. Acad. Sci. U.S.A., 51, 226–231 (1964).

    Article  ADS  CAS  Google Scholar 

  2. Boyce, R. P., and Howard-Flanders, P., Proc. natn. Acad. Sci. U.S.A., 51, 293–300 (1964).

    Article  ADS  CAS  Google Scholar 

  3. Howard-Flanders, P., A. Rev. Biochem., 37, 175–200 (1968).

    Article  CAS  Google Scholar 

  4. Grossman, L., Braun, A., Feldberg, R., and Mahler, I., A. Rev. Biochem., 44, 19–43 (1975).

    Article  CAS  Google Scholar 

  5. Howard-Flanders, P., Boyce, R. P., and Theriot, L., Genetics, 53, 1119–1136 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ogawa, H., Shimada, K., and Tomizawa, J., Molec. gen. Genet., 101, 227–244 (1968).

    Article  CAS  PubMed  Google Scholar 

  7. Seeberg, E., and Johansen, I., Molec. gen. Genet., 123, 173–184 (1973).

    Article  CAS  PubMed  Google Scholar 

  8. Takagi, Y., et al., Cold Spring Harb. Symp. quant. Biol, 33, 219–277 (1968).

    Article  CAS  PubMed  Google Scholar 

  9. Braun, A., and Grossman, L., Proc. natn. Acad. Sci. U.S.A., 71, 1838–1842 (1974).

    Article  ADS  CAS  Google Scholar 

  10. Waldstein, E. A., Sharon, R., and Ben-Ishai, R., Proc. natn. Acad. Sci. U.S.A., 71, 2651–2654 (1974).

    Article  ADS  CAS  Google Scholar 

  11. Seeberg, E., and Strike, P., J. Bact., 125, 787–795 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Strike, P., and Emmerson, P. T., Molec. gen. Genet., 130, 39–45 (1974).

    Article  CAS  PubMed  Google Scholar 

  13. Barbour, S. D., and Clark, A. J., Proc. natn. Acad. Sci. U.S.A., 65, 955–961 (1970).

    Article  ADS  CAS  Google Scholar 

  14. Wickner, W., Brutlag, D., Schekman, R., and Kornberg, A., Proc. natn. Acad. Sci. U.S.A., 69, 965–969 (1972).

    Article  ADS  CAS  Google Scholar 

  15. Schekman, R., Weiner, J. H., Weiner, A., and Kornberg, A., J. biol. Chem., 250, 5859–5865 (1975).

    CAS  PubMed  Google Scholar 

  16. Morris, C. F., Sinha, N. K., and Alberts, B. M., Proc. natn. Acad. Sci. U.S.A., 72, 4800–4804 (1975).

    Article  ADS  CAS  Google Scholar 

  17. Kato, T., J. Bact., 112, 1237–1246 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Seeberg, E., and Rupp, W. D., in Molecular Mechanisms for the Repair of DNA (edit. by Hanawalt, P. C., and Setlow, R. B.), 439–441 (Plenum, New York, 1975).

    Book  Google Scholar 

  19. Wickner, R. B., and Hurwitz, J., Biochem. biophys. Res. Commun., 47, 202–211 (1972).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SEEBERG, E., NISSEN-MEYER, J. & STRIKE, P. Incision of ultraviolet-irradiated DNA by extracts of E. coli requires three different gene products. Nature 263, 524–526 (1976). https://doi.org/10.1038/263524a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/263524a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing