Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lipoprotein of Gram-negative bacteria is essential for growth and division

Abstract

THE lipoprotein of Gram-negative bacteria has become a cell surface component of central interest following its characterisation by Braun and coworkers1. This small protein (molecular weight 7,500) is unique in containing as its N-terminal amino acid a glycerylcysteine to which three fatty acids are covalently bound2. It is also unusual in its subcellular distribution: one-third of the total lipoprotein is covalently linked to the cell wall peptidoglycan while the remaining two-thirds exists in an unlinked or “free” form in the outer membrane4. Free and murein-linked lipoprotein seem to be identical in structure5,6, and pulse–chase experiments indicate that free lipoprotein is the precursor to murein-linked lipoprotein4. Braun's lipoprotein or an immunologically related protein has been found in a wide variety of Gram-negative organisms7,8, and in Escherichia coli is present in about 3 × 105 copies per cell1. These observations suggest that lipoprotein performs some essential function(s); however, the nature of that function is unknown. It has been suggested that lipoprotein may have a role in anchoring the outer membrane to the cell wall3, or function in transporting small molecules through the outer membrane9 or be involved in cell division10,11. To clarify the role of Braun's lipoprotein, we have isolated a mutant deficient in its synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Braun, V., Biochim. biophys. Acta, 415, 335–377 (1975).

    Article  CAS  Google Scholar 

  2. Hantke, K., and Braun, V., Eur. J. Biochem., 34, 284–296 (1973).

    Article  CAS  Google Scholar 

  3. Braun, V., and Rehn, K., Eur. J. Biochem., 10, 426–438 (1969).

    Article  CAS  Google Scholar 

  4. Inouye, M., Shaw, J., and Shen, C., J. biol Chem., 247, 8154–8159 (1972).

    CAS  PubMed  Google Scholar 

  5. Hirashima, A., Wu, H. C., Venkateswaran, P. S., and Inouye, M., J. biol. Chem., 248, 5654–5659 (1973).

    CAS  PubMed  Google Scholar 

  6. Braun, V., Hantke, K., and Henning, U., FEBS Lett., 60, 26–28 (1975).

    Article  CAS  Google Scholar 

  7. Braun, V., Rehn, K., and Wolff, H., Biochemistry, 9, 5041–5049 (1970).

    Article  CAS  Google Scholar 

  8. Halegoua, S., Hirashima, A., and Inouye, M., J. Bact., 120, 1204–1208 (1974).

    CAS  PubMed  Google Scholar 

  9. Inouye, M., Proc. natn. Acad. Sci. U.S.A., 71, 2396–2400 (1974).

    Article  ADS  CAS  Google Scholar 

  10. Burden, I. D. J., and Murray, R. G. E., J. Bact., 119, 1039–1056 (1974).

    Google Scholar 

  11. James, R., and Gudas, L. J., J. Bact., 125, 374–375 (1976).

    CAS  PubMed  Google Scholar 

  12. Braun, V., and Bosch, V., Proc. natn. Acad. Sci. U.S.A., 69, 970–974 (1972).

    Article  ADS  CAS  Google Scholar 

  13. Hirashima, A., and Inouye, M., Nature, 242, 405–407 (1973).

    Article  ADS  CAS  Google Scholar 

  14. Adelberg, E., Mandel, M., and Chen, G., Biochem. biophys. Res. Commun., 18, 788–795 (1965).

    Article  CAS  Google Scholar 

  15. Vogel, H., and Bonner, D., J. biol. Chem., 218, 97–106 (1956).

    CAS  Google Scholar 

  16. Ames, G. F., Spudich, E. N., and Nikaido, H., J. Bact., 117, 406–416 (1974).

    CAS  PubMed  Google Scholar 

  17. Koplow, J., and Goldfine, H., J. Bact., 117, 527–543 (1974).

    CAS  PubMed  Google Scholar 

  18. Chai, T., and Foulds, J., J. molec. Biol., 85, 465–474 (1974).

    Article  CAS  Google Scholar 

  19. Skurry, R. A., Hancock, R., and Reeves, P., J. Bact., 119, 726–735 (1974).

    Google Scholar 

  20. Henning, U., and Haller, I., FEBS Lett., 55, 161–164 (1975).

    Article  CAS  Google Scholar 

  21. Wu, H., and Lin, J., J. Bact., 126, 147–156 (1976).

    CAS  PubMed  Google Scholar 

  22. Braun, V., and Bosch, V., FEBS Lett., 34, 302–306 (1973).

    Article  CAS  Google Scholar 

  23. Laemmli, U. K., Nature, 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  24. Studier, F. W., J. molec. Biol., 79, 237–248 (1973).

    Article  CAS  Google Scholar 

  25. Willsky, G. R., and Malamy, M. H., J. Bact., 127, 595–609 (1976).

    CAS  PubMed  Google Scholar 

  26. Lennox, E. S., Virology, 1, 190–206 (1955).

    Article  CAS  Google Scholar 

  27. Willsky, G. R., Bennett, R. L., and Malamy, M. H., J. Bact., 113, 529–539 (1973).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

TORTI, S., PARK, J. Lipoprotein of Gram-negative bacteria is essential for growth and division. Nature 263, 323–326 (1976). https://doi.org/10.1038/263323a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/263323a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing