Lesion of striatal neurons with kainic acid provides a model for Huntington's chorea


THE symptoms of Huntington's chorea, an hereditary movement disorder, result from degeneration of neurones primarily in the basal ganglia1. Several neurochemical abnormalities have been identified in the brains of patients dying with this disorder2–5, but no animal system with similar neuropathological changes has been described. We now report that the injection of kainic acid into the rat striatum causes neuronal degeneration, neurochemical alterations and behavioural responses resembling Huntington's chorea. This procedure could provide an animal model for the study of the disease.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Bruyn, G. W., in Handbook of Clinical Neurology, Diseases of Basal Ganglia, 6, (edit. by Vinken, P. J., and Bruyn, G. W.), 298–377 (North-Holland, Amsterdam, 1968).

    Google Scholar 

  2. 2

    Perry, T. L., Hansen, S., and Kloster, M., New Engl. J. Med., 288, 337–342 (1973).

    CAS  Article  Google Scholar 

  3. 3

    Bird, E. D., and Iversen, L. L., Brain, 97, 457–472 (1974).

    CAS  Article  Google Scholar 

  4. 4

    McGeer, P. L., and McGeer, E. G., J. Neurochem., 26, 65–76 (1976).

    CAS  PubMed  Google Scholar 

  5. 5

    Stahl, W. L., and Swanson, P. D., Neurology, 24, 813–819 (1974).

    CAS  Article  Google Scholar 

  6. 6

    Lucas, D. R., and Newhouse, J. P., Am. med. Ass. Archs Opthal, 58, 193–204 (1957).

    CAS  Article  Google Scholar 

  7. 7

    Olney, J. W., Science, 164, 719–721 (1969).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Perez, V. J., and Olney, J. W., J. Neurochem., 19, 1777–1782 (1972).

    CAS  Article  Google Scholar 

  9. 9

    Olney, J. W., Schainker, B., and Rhee, V., in Hormones, Behavior and Psychopathology (edit. by Sachar, E.), 153–158 (Raven, New York, 1976).

    Google Scholar 

  10. 10

    Olney, J. W., Rhee, V., and Ho, O. L., Expl Brain Res., 14, 61–76 (1972).

    Google Scholar 

  11. 11

    Zieglgansberger, W., and Puil, E. A., Expl Brain Res., 17, 35–49 (1973).

    CAS  Article  Google Scholar 

  12. 12

    Buu, N. T., and Van Gelder, N. M., Gen. Pharmac., 7, 5–14 (1976).

    CAS  Article  Google Scholar 

  13. 13

    Olney, J. W., Rhee, V., and Ho, O. L., Brain Res., 77, 507–512 (1974).

    CAS  Article  Google Scholar 

  14. 14

    Van Harreveld, A., and Fifova, E., Expl molec. Path., 15, 61–81 (1971).

    CAS  Article  Google Scholar 

  15. 15

    Olney, J. W., Sharpe, L. G., and de Gubareff, T., Neurosci. Abstr., 1, 371 (1975).

    Google Scholar 

  16. 16

    McGeer, P. L., and McGeer, E. G., in GABA in Nervous System Function (edit. by Roberts, E., Chase, T. N., and Tower, D. B.), 487–496 (Raven, New York, 1976).

    Google Scholar 

  17. 17

    Glowinski, J., and Iversen, L. L., J. Neurochem., 13, 655–669 (1966).

    CAS  Article  Google Scholar 

  18. 18

    McLennan, H., in Handbook of Psychopharmacology: Amino Acid Neurotransmitters, 4 (edit. by Iversen, L. L., Iversen, S. D., and Snyder, S. H.), 211–228 (Plenum, New York, 1975).

    Google Scholar 

  19. 19

    Javoy, F., Sotelo, C., Herbert, A., and Agid, Y., Brain Res., 102, 201–215 (1976).

    CAS  Article  Google Scholar 

  20. 20

    Fonnum, F., Grofora, I., Rinvik, E., Storm-Mathiesen, J., and Walburg, F., Brain Res., 71, 77–92 (1974).

    CAS  Article  Google Scholar 

  21. 21

    Ungerstedt, U., Acta physiol. scand., Suppl., 367, 1–22 (1971).

    CAS  Article  Google Scholar 

  22. 22

    Racagni, G., Cheney, D. L., Trabucchi, M., and Costa, E., J. Pharmac. exp. Ther., 196, 323–332 (1976).

    CAS  Google Scholar 

  23. 23

    Coyle, J. T., Biochem. Pharmac., 21, 1935–1944 (1972).

    CAS  Article  Google Scholar 

  24. 24

    Bull, G., and Oderfeld-Nowak, B., J. Neurochem., 19, 935–947 (1971).

    Article  Google Scholar 

  25. 25

    Wilson, S. H., et al., J. biol. Chem., 247, 3159–3169 (1972).

    CAS  PubMed  Google Scholar 

  26. 26

    Graham, L. T., and Aprison, M. H., Analyt. Biochem., 15, 487–497 (1966).

    CAS  Article  Google Scholar 

  27. 27

    Goldberg, A. M., and McCamman, R. E., J. Neurochem., 20, 1–8 (1973).

    CAS  Article  Google Scholar 

  28. 28

    Coyle, J. T., and Henry, D., J. Neurochem., 21, 61–67 (1973).

    CAS  Article  Google Scholar 

  29. 29

    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, P. J., J. biol. Chem., 193, 265–275 (1975).

    Google Scholar 

  30. 30

    Coyle, J. T., and Enna, S. J., Brain Res. 111, 119–133 (1976).

    CAS  Article  Google Scholar 

  31. 31

    Simon, J. R., Atweh, S., and Kuhar, M. J., J. Neurochem., 26, 909–922 (1976).

    CAS  Article  Google Scholar 

  32. 32

    Holz, R. W., and Coyle, J. T., Molec. Pharmac., 10, 746–758 (1974).

    CAS  Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

COYLE, J., SCHWARCZ, R. Lesion of striatal neurons with kainic acid provides a model for Huntington's chorea. Nature 263, 244–246 (1976). https://doi.org/10.1038/263244a0

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing