Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the extended solar magnetic field and the sunspot cycle variation in cosmic ray intensity

Abstract

THE interplanetary magnetic field within several astronomical units of the Sun appears to have one polarity in most of the hemisphere north of the solar equatorial plane and the opposite polarity in most of the hemisphere south of the equatorial plane1–7. The two hemispheres are separated by a curved current sheet that typically crosses the solar equatorial plane in either two or four places, thus dividing the equatorial region into either two or four sectors. Near sunspot minimum, at 1 AU the curved current sheet has a spread in latitude of typically ± 15°, so that the sector boundary (the current sheet separating the two hemispheres of opposed field polarity) is almost parallel to the solar equatorial plane. In the photosphere, on the other hand, the sector boundary makes an angle of 90° with the equatorial plane8. At 1.5 R, in 1972 and 1973, the angle between the sector boundary and the equatorial plane was 45° (ref. 9), and at 3–10 R the angle between boundary and plane was 25° (ref. 10). A schematic diagram of this structure for the case of four sectors is shown in Fig. 1. We here propose that a connection exists between the extent of these magnetic fields and the observed variations in cosmic ray intensity at the Earth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schatten, K., Solar Wind (edit. by Sonnett, C. P., Coleman, P. J., and Wilcox, J. M.), 65–92 (Scientific and Technical Office, NASA, 1972).

    Google Scholar 

  2. Schultz, M., Astrophys. Space Sci., 24, 371–383 (1973).

    Article  ADS  Google Scholar 

  3. Sawyer, C., Geophys. Res. Lett., 1, 295–297 (1974).

    Article  ADS  Google Scholar 

  4. Alfven, H., Proc. Nobel Symposium on the Physics of Hot Plasma in the Magnetosphere (Kiruna, Sweden, 1975).

    Google Scholar 

  5. Levy, E. H., Proc. 14th int. Cosmic Ray Conf., 15–29 August 1975, 4, 1215–1220 (Max-Planck-Institut für Extraterrestrische Physik, München, FRG, 1975).

    ADS  CAS  Google Scholar 

  6. Svalgaard, L., Wilcox, J. M., Scherrer, P. H., and Howard, R., Sol. Phys., 45, 83–91 (1975).

    Article  ADS  Google Scholar 

  7. Saito, T., Sci. Rep. Tohoku Univ., Geophys., 23, 37–54 (1975).

    ADS  Google Scholar 

  8. Wilcox, J. M., Space Sci. Rev., 8, 258–328 (1968).

    Article  ADS  Google Scholar 

  9. Hansen, S., Sawyer, C., and Hansen, R. T., Geophys. Res. Lett., 1, 13–15 (1974).

    Article  ADS  Google Scholar 

  10. Howard, R. A., and Koomen, M. J., Sol. Phys., 37, 469–475 (1974).

    Article  ADS  Google Scholar 

  11. Vsekhsvjatsky, S. K., The Solar Corona, Proc. int. astr. Un. Symp., 16, Cloudcroft, New Mexico, 28–30 August 1961 (edit. by Evans, J. W.) 271–280 (Academic, New York, 1963).

    Google Scholar 

  12. Diodato, L., Moreno, G., Signorini, C., and Ogilvie, K. W., J. geophys. Res., 79, 5095–5108 (1974).

    Article  ADS  Google Scholar 

  13. Barouch, E., and King, J. H., 14th int. Cosmic Ray Conf., 15–29 August 1975, 3, 1036–1041 (Max-Planck-Institut für Extraterrestrische Physik, München, FRG, 1975).

    Google Scholar 

  14. Rosenberg, R. L., and Coleman, P. J., Jr., J. geophys. Res., 74, 5611–5622 (1969).

    Article  ADS  Google Scholar 

  15. Wilcox, J. M., and Scherrer, P. H., J. geophys. Res., 77, 5385–5388 (1972).

    Article  ADS  Google Scholar 

  16. Svalgaard, L., J. geophys. Res., 77, 4027–4034 (1972).

    Article  ADS  Google Scholar 

  17. Russell, C. T., and Rosenberg, R. L., Sol. Phys., 37, 251–256 (1974).

    Article  ADS  Google Scholar 

  18. Wilcox, J. M., Svalgaard, L., and Hedgecock, P. C., J. geophys. Res., 80, 3685–3688 (1975).

    Article  ADS  Google Scholar 

  19. Vernov, S. O., Charakhchyan, A. N., Stozhkov, Ju. I., and Charakhchyan, T. N., Proc. 14th int. Cosmic Ray Conf., 15–29 August 1975, 3, 1015–1024 (Max-Planck-Institut für Extraterrestrische Physik, München, FRG, 1975).

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SVALGAARD, L., WILCOX, J. Structure of the extended solar magnetic field and the sunspot cycle variation in cosmic ray intensity. Nature 262, 766–768 (1976). https://doi.org/10.1038/262766a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/262766a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing