Superconductivity in a two-dimensional electron gas

Abstract

In a series of recent experiments, Kravchenko and colleagues1,2 observed unexpectedly that a two-dimensional electron gas in zero magnetic field can become conducting at low temperatures: the two-dimensionality was imposed by confining the electron gas to the interface between two semiconductors. The observation of this conducting phase is surprising, as the conventional theory of metals precludes the existences of a metallic state at zero temperature in two dimensions3. Nevertheless, there are now several experiments confirming the existence of the new conducting phase in dilute two-dimensional electron gases in zero magnetic field4,5,6,7. Here we argue, on the basis of an analysis of these experiments and general theoretical grounds, that this phase is in fact a superconductor with an inhomogeneous charge density.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Scaling curve for the magnetoresistance obtained from experimental data of ref.2.
Figure 2: Schematic mean-field phase diagram for a 2D disordered electron system.

References

  1. 1

    Kravchenko, S. V., Simonian, D., Sarachik, M. P., Mason, W. & Furneaux, J. E. Electric field scaling at a B=0 metal-insulator transition in two dimensions. Phys. Rev. Lett. 77, 4938–4941 (1996).

    ADS  CAS  Article  Google Scholar 

  2. 2

    Simonian, D., Kravchenko, S. V. & Sarachik, M. P. Magnetic field suppression of the conducting phase in two dimensions. Phys. Rev. Lett. 79, 2304–2307 (1997).

    ADS  CAS  Article  Google Scholar 

  3. 3

    Abrahams, E., Anderson, P. W., Licciardello, D. C. & Ramakrishnan, T. V. Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673–676 (1979).

    ADS  Article  Google Scholar 

  4. 4

    Popovic, D., Fowler, A. B. & Washburn, S. Metal-insulator transition in two dimensions: effects of disorder and magnetic field. Phys. Rev. Lett. 79, 1543–1546 (1997).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Simmons, M. Y.et al. Metal-insulator transition at B=0 in a dilute two dimensional GaAs/AlGaAs hole gas. Phys. Rev. Lett. 80, 1292–1295 (1998).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Hanien, Y.et al. Metallic-like conductivity of a two-dimensional hole system. Phys. Rev. Lett. 80, 1288–1291 (1998).

    ADS  Article  Google Scholar 

  7. 7

    Coleridge, P. T.et al. Metal-insulator transition at B=0 in p-SiGe.Preprint cond-mat/9708118 at 〈http://xxx.lanl.gov〉 (1997).

  8. 8

    Langer, J. S. & Neal, T. Breakdown of the concentration expansion for the impurity resistivity of metals. Phys. Rev. Lett. 16, 984–986 (1966).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Lee, P. A. & Ramakrishnan, A. R. Disordered electronic systems. Rev. Mod. Phys. 57, 287–337 (1985).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Chakravarty, S., Yin, L. & Abrahams, E. Interactions and scaling in a disordered 2D metal.Preprint cond-mat/9712217 at 〈http://xxx.lanl.gov〉 (1997).

  11. 11

    Anderson, P. W. Theory of dirty superconductors. J. Phys. Chem. Solids 11, 26–30 (1959).

    ADS  CAS  Article  Google Scholar 

  12. 12

    Phillips, P. & Wan, Y. Incipient p-wave superconductivity in a Si MOSFET.Preprint cond-mat/9704200 at 〈http://xxx.lanl.gov〉 (1997).

  13. 13

    Yazdani, A. & Kapitulnik, A. Superconducting-insulating transition in two-dimensional a-MoGe thin films. Phys. Rev. Lett. 74, 3037–3040 (1995).

    ADS  CAS  Article  Google Scholar 

  14. 14

    Jaeger, H. M.et al. Onset of superconductivity in ultrathin granular metal films. Phys. Rev. B 40, 182–196 (1989).

    ADS  CAS  Article  Google Scholar 

  15. 15

    Imry, Y. & Strongin, M. Destruction of superconductivity in granular and highly disordered metals. Phys. Rev. B 24, 6353–6360 (1981).

    ADS  CAS  Article  Google Scholar 

  16. 16

    Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995).

    ADS  CAS  Article  Google Scholar 

  17. 17

    Fisher, M. P. A. Quantum phase transitions in disordered two-dimensional superconductors. Phys. Rev. Lett. 65, 923–926 (1990).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Castellani, C., DiCastro, C. & Lee, P. A. Metallic phase and metal-insulator transition in 2d electronic systems. Phys. Rev. B 57, R9381–R9384 (1998).

    ADS  CAS  Article  Google Scholar 

  19. 19

    Dobrosavaljevic, V., Abrahams, E., Miranda, E. & Chakravarty, S. Scaling theory of two-dimensional metal-insulator transitions. Phys. Rev. Lett. 79, 455–458 (1997).

    ADS  Article  Google Scholar 

  20. 20

    Pudalov, V. M., Brunthaler, G., Prinz, A. & Bauer, G. Logarithmic temperature dependence of the conductivity and lack of universal one-parameter scaling in the two-dimensional metal.Preprint cond-mat/9801077 at 〈http://xxx.lanl.gov〉 (1998).

  21. 21

    Tanatar, B. & Ceperley, D. M. Ground state of the two-dimensional electron gas. Phys. Rev. B 39, 5005–5016 (1989).

    ADS  CAS  Article  Google Scholar 

  22. 22

    Eguiluz, A. G., Maradudin, A. A. & Elliott, R. J. Two-dimensional Wigner lattice in a magnetic field and in the presence of a random array of pinning centers. Phys. Rev. B 27, 4933–4945 (1983).

    ADS  Article  Google Scholar 

  23. 23

    Chui, S. T. & Tanatar, B. Impurity effect on the two-dimensional-electron fluid-solid transition in zero field. Phys. Rev. Lett. 74, 458–461 (1995).

    ADS  CAS  Article  Google Scholar 

  24. 24

    Pudalov, V. M., D'Iorio, M., Kravchenko, S. V. & Campbell, J. W. Zero-magnetic-field collective insulator phase in a dilute 2D electron system. Phys. Rev. Lett. 70, 1866–1869 (1993).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Chui, S. T. Depinning, defect creation and quantum tunneling. Phys. Lett. A 180, 149–153 (1993).

    ADS  Article  Google Scholar 

  26. 26

    Takada, Y. s- and p-wave pairings in a dilute electron gas. Phys. Rev. B 47, 5202–5211 (1993).

    ADS  CAS  Article  Google Scholar 

  27. 27

    Kelly, M. J. & Hanke, W. Surface superconductivity and the MOS system. Phys. Rev. B 23, 112–123 (1981).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Ren, Y. & Zhang, F. C. Fermion analogy of anyon superconductivity in the two-dimensional electron gas. Phys. Rev. B 49, 1532–1535 (1994).

    ADS  CAS  Article  Google Scholar 

  29. 29

    Belitz, D. & Kirkpatrick, T. Are Si MOSFET's triplet superconductors.Preprint cond-mat/9705023 at 〈http://xxx.lanl.gov〉 (1997).

  30. 30

    Zhitenev, N. B., Ashoori, R. C., Pfeiffer, L. N. & West, K. W. Periodic and aperiodic bunching in the addition spectra of quantum dots. Phys. Rev. Lett. 77, 1833–1836 (1996).

    ADS  CAS  Article  Google Scholar 

  31. 31

    Beasley, M. R., Mooij, J. E. & Orlando, T. P. Possibility of vortex-antivortex pair dissociation in two-dimensional superconductors. Phys. Rev. Lett. 42, 1165–1168 (1979).

    ADS  CAS  Article  Google Scholar 

  32. 32

    Moroni, S., Ceperley, D. & Senatore, G. in Proc. Rochester Symp. on Strongly Coupled Plasmas (eds van Horn, H. & Ichimaru, S.) 445–452 (Univ. Rochester Press, Rochester, 1993).

    Google Scholar 

Download references

Acknowledgements

We thank B. Laughlin for comments on the presentation of this Letter, and thank E.Fradkin, N. Markovic, A. Goldman, A. Yazdani, A. Castro-Neto, A. Leggett, D. Ceperley, T. Giamarchi, P. Parris and S. Wan for discussions. This work was supported by the ACS Petroleum Research Fund and the NSF.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Philip Phillips.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Phillips, P., Wan, Y., Martin, I. et al. Superconductivity in a two-dimensional electron gas. Nature 395, 253–257 (1998). https://doi.org/10.1038/26179

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.