Abstract
First-order difference equations arise in many contexts in the biological, economic and social sciences. Such equations, even though simple and deterministic, can exhibit a surprising array of dynamical behaviour, from stable points, to a bifurcating hierarchy of stable cycles, to apparently random fluctuations. There are consequently many fascinating problems, some concerned with delicate mathematical aspects of the fine structure of the trajectories, and some concerned with the practical implications and applications. This is an interpretive review of them.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
SETAR-Tree: a novel and accurate tree algorithm for global time series forecasting
Machine Learning Open Access 13 March 2023
Access options
Subscribe to this journal
Receive 51 print issues and online access
204,58 € per year
only 4,01 € per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout
References
May, R. M., and Oster, G. F., Am. Nat., 110 (in the press).
Varley, G. C., Gradwell, G. R., and Hassell, M. P., Insect Population Ecology (Blackwell, Oxford, 1973).
May, R. M., (ed.), Theoretical Ecology: Principles and Applications (Blackwell, Oxford, 1976).
Guckenheimer, J., Oster, G. F., and Ipaktchi, A., Theor. Pop. Biol. (in the press).
Oster, G. F., Ipaktchi, A., and Rocklin, I., Theor. Pop. Biol. (in the press).
Asmussen, M. A., and Feldman, M. W., J. theor. Biol. (in the press).
Hoppensteadt, F. C., Mathematical Theories of Populations: Demographics, Genetics and Epidemics (SIAM, Philadelphia, 1975).
Samuelson, P. A., Foundations of Economic Analysis (Harvard University Press, Cambridge, Massachusetts, 1947).
Goodwin, R. E., Econometrica, 19, 1–17 (1951).
Baumol, W. J., Economic Dynamics, 3rd ed. (Macmillan, New York, 1970).
See, for example, Kemeny, J., and Snell, J. L., Mathematical Models in the Social Sciences (MIT Press, Cambridge, Massachusetts, 1972).
Chaundy, T. W., and Phillips, E., Q. Jl Math. Oxford, 7, 74–80 (1936).
Myrberg, P. J., Ann. Akad. Sc. Fennicae, A, I, No. 336/3 (1963).
Myrberg, P. J., Ann. Akad. Sc. Fennicae, A, I, No. 259 (1958).
Lorenz, E. N., J. Atmos. Sci., 20, 130–141 (1963); Tellus, 16, 1–11 (1964).
Metropolis, N., Stein, M. L., and Stein, P. R., J. Combinatorial Theory, 15(A), 25–44 (1973).
Maynard Smith, J., Mathematical Ideas in Biology (Cambridge University Press, Cambridge, 1968).
Krebs, C. J., Ecology (Harper and Row, New York, 1972).
May, R. M., Am. Nat., 107, 46–57 (1972).
Li, T.-Y., and Yorke, J. A., Am. Math. Monthly, 82, 985–992 (1975).
Hoppensteadt, F. C., and Hyman, J. M., (Courant Institute, New York University: preprint, 1975).
Smale, S., and Williams, R.,(Department of Mathematics, Berkeley: preprint, 1976).
May, R. M., Science, 186, 645–647 (1974).
Moran, P. A. P., Biometrics, 6, 250–258 (1950).
Ricker, W. E., J. Fish. Res. Bd. Can., 11, 559–623 (1954).
Cook, L. M., Nature, 207, 316 (1965).
Macfadyen, A., Animal Ecology: Aims and Methods (Pitman, London, 1963).
May, R. M., J. theor. Biol., 51, 511–524 (1975).
Guckenheimer, J., Proc. AMS Symposia in Pure Math., XIV, 95–124 (1970).
Gilbert, E. N., and Riordan, J., Illinois J. Math., 5, 657–667 (1961).
Preston, C. J., (King's College, Cambridge: preprint, 1976).
Gumowski, I., and Mira, C., C. r. hebd. Séanc. Acad. Sci., Paris, 281a, 45–48 (1975); 282a, 219–222 (1976).
Layzer, D., Sci. Am., 233(6), 56–69 (1975).
Ulam, S. M., Proc. Int. Congr. Math. 1950, Cambridge, Mass. ; Vol. II, pp. 264–273 (AMS, Providence R. I., 1950).
Ulam, S. M., and von Neumann, J., Bull. Am. math. Soc. (abstr.), 53, 1120 (1947).
Kac, M., Ann. Math., 47, 33–49 (1946).
May, R. M., Science, 181, 1074 (1973).
Hassell, M. P., J. Anim. Ecol., 44, 283–296 (1974).
Hassell, M. P., Lawton, J. H., and May, R. M., J. Anim. Ecol. (in the press).
Ruelle, D., and Takens, F., Comm. math. Phys., 20, 167–192 (1971).
Landau, L. D., and Lifshitz, E. M., Fluid Mechanics (Pergamon, London, 1959).
Martin, P. C., Proc. Int. Conf. on Statistical Physics, 1975, Budapest (Hungarian Acad. Sci., Budapest, in the press).
Southwood, T. R. E., in Insects, Science and Society (edit. by Pimentel, D.), 151–199 (Academic, New York, 1975).
Metropolis, N., Stein, M. L., and Stein, P. R., Numer. Math., 10, 1–19 (1967).
Gumowski, I., and Mira, C., Automatica, 5, 303–317 (1969).
Stein, P. R., and Ulam, S. M., Rosprawy Mat., 39, 1–66 (1964).
Beddington, J. R., Free, C. A., and Lawton, J. H., Nature, 255, 58–60 (1975).
Hirsch, M. W., and Smale, S., Differential Equations, Dynamical Systems and Linear Algebra (Academic, New York, 1974).
Kolata, G. B., Science, 189, 984–985 (1975).
Smale, S., (Department of Mathematics, Berkeley: preprint, 1976).
May, R. M., and Leonard, W. J., SIAM J. Appl. Math., 29, 243–253 (1975).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
May, R. Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976). https://doi.org/10.1038/261459a0
Issue Date:
DOI: https://doi.org/10.1038/261459a0
This article is cited by
-
A generalized feedback control model for the logistic differential equation
International Journal of Dynamics and Control (2023)
-
A Three-Dimensional (3D) Space Permutation and Diffusion Technique for Chaotic Image Encryption Using Merkel Tree and DNA Code
Sensing and Imaging (2023)
-
A discrete evolutionary Beverton–Holt population model
International Journal of Dynamics and Control (2023)
-
An image encryption scheme based on block compressed sensing and Chen’s system
Nonlinear Dynamics (2023)
-
A novel combination of information confidentiality and data hiding mechanism
Multimedia Tools and Applications (2023)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.