Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular hydrogen formation on interstellar dust grains

Abstract

EARLY estimates of the maximum temperature, TM, of interstellar dust grains (IDGs) consistent with efficient H2 formation on their surface, yielded values near 10 K (refs 1–3). The expression for TM is where EH is the binding energy of hydrogen to the dust grain 400 K, S is the sticking coefficient of H on the grain 0.5, v is the average velocity of H atoms in the dust clouds 105 cm s−1, nH is the hydrogen density in the cloud 102 cm−3, A is the surface area of a dust grain 10−9cm2, and τ0 6×10−13s. Observations have shown this TM to be unacceptably low (see, for example, refs 5 and 4), and have led to proposals of new or revised mechanisms for interstellar H2 formation5–9. Here we point out that for a certain class of gas–solid systems the characteristic desorption lifetime, τ0 , is many orders of magnitude longer than that used in refs 1–3. For grains made of these materials the original “physisorption model”1–3 will work for grain temperatures up to 30 K.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. van de Hulst, H. C., Rech. astr. Obs. Utrecht, 11, Pt. 2 (1940).

  2. Gould, R. J., and Salpeter, E. E., Astrophys. J., 138, 393 (1963).

    Article  ADS  CAS  Google Scholar 

  3. Augason, G. C., Astrophys. J., 162, 463 (1970).

    Article  ADS  CAS  Google Scholar 

  4. Rank, D. M., Townes, C. H., and Welch, W. J., Science, 174, 1083 (1971).

    Article  ADS  CAS  Google Scholar 

  5. Brecher, A., and Arrhenius, G., Nature, 230, 107 (1971).

    Article  ADS  CAS  Google Scholar 

  6. Solomon, P. M., and Klemperer, W., Astrophys. J., 178, 389 (1972).

    Article  ADS  CAS  Google Scholar 

  7. Hollenbach, D., and Salpeter, E. E., Astrophys. J., 163, 155 (1971).

    Article  ADS  CAS  Google Scholar 

  8. Dalgarno, A., and McCray, R. A., Astrophys. J., 181, 95 (1973).

    Article  ADS  CAS  Google Scholar 

  9. Watson, W., and Salpeter, E. E., Astrophys. J., 175, 659 (1972).

    Article  ADS  CAS  Google Scholar 

  10. Frenkel, J., Z. Phys., 26, 117 (1924).

    Article  ADS  CAS  Google Scholar 

  11. Ying, S. C., and Bendow, B., Phys. Rev. B., 7, 637 (1973).

    Article  ADS  CAS  Google Scholar 

  12. Constabaris, G., Sams, J. R., Jr., and Halsey, G. D., Jr, J. chem. Phys., 65, 367 (1961).

    Article  CAS  Google Scholar 

  13. Saunderson, D. H., AERE-M1199 (Atomic Energy Research Establishment, 1963).

  14. Huang, K., Statistical Mechanics, 258 (WileyNew York, 1963).

    Google Scholar 

  15. Jensen, J. E., et al., Selected Cryogenic Data, Sect. VIII, Bubble Chamber Group, Brookhaven National Laboratory (1961).

    Google Scholar 

  16. Washburn, E. W. (ed.), National Research Council, International Critical Tables of Numerical Data, Physics, Chemistry and Technology, 5, 95 (McGraw-Hill, New York, 1929).

  17. Proc. R. Soc., A 119, 293 (1928).

  18. Jelend, W., and Menzel, D., Surf. Sci., 42, 485 (1974).

    Article  ADS  CAS  Google Scholar 

  19. Cohen, S. A., thesis, MIT 184 (1973).

  20. Antonini, J. F., Nuovo. Cim., Suppl., 5, 354 (1967).

    CAS  Google Scholar 

  21. Cohen, S. A., and King, J. G., Phys. Rev. Lett., 31, 703 (1973).

    Article  ADS  CAS  Google Scholar 

  22. Degras, D. A., Nuovo Cim., Suppl., 5, 421 (1967).

    Google Scholar 

  23. Lee, T. J., Gowland, L., and Reddish, V. C., Nature, 231, 193 (1971).

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

COHEN, S. Molecular hydrogen formation on interstellar dust grains. Nature 261, 215–216 (1976). https://doi.org/10.1038/261215a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/261215a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing