Abstract
Computer simulation of the molecular dynamics of retinal during its photoisomerisation inside a restrictive active site gives a detailed model for the sequence of events in the first step of the vision process. It is proposed that the prelumirhodopsin intermediate contains a strained all-trans retinal molecule produced directly and rapidly from the 11-cis, 12-s-trans conformation in rhodopsin by a bicycle-pedal isomerisation. The model reproduces the main experimental observations and explains how the protein makes the photoisomerisation path unique.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Ultrafast structural changes direct the first molecular events of vision
Nature Open Access 22 March 2023
-
Retinal chromophore charge delocalization and confinement explain the extreme photophysics of Neorhodopsin
Nature Communications Open Access 04 November 2022
-
Light activation of Orange Carotenoid Protein reveals bicycle-pedal single-bond isomerization
Nature Communications Open Access 28 October 2022
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Wald, G., Science, 162, 230–239 (1968).
Honig, B., and Ebrey, T. G., A. Rev. Biophys. Bioengng., 3, 151–177 (1974).
Ebrey, T. G., and Honig, B., Q. Rev. Biophys., 8, 130–184 (1975).
Busch, G. E., Applebury, M. L., Lamola, A. A., and Rentzepis, P. M. R., Proc. natn. Acad. Sci. U.S.A., 69, 2802–2805 (1972).
Oseroff, A. R., and Callendar, R. H., Biochemistry, 13, 4243–4248 (1974).
Lewis, A., and Spoonhower, J., in Neutron, X-ray and Laser Spectroscopy in Biophysics and Chemistry, 342–376 (Academic, New York, 1974).
Chan, W. K., Nakanishi, W. K. Ebrey, T. G., and Honig, B., J. Am. chem. Soc., 96, 3642–3644 (1974).
Crouch, R., Purvin, V., Nakanishi, K., and Ebrey, T. G., Proc. natn. Acad. Sci. U.S.A., 72, 1538–1542 (1975).
Blatz, P. E., Lin, M., Balasvbramanigan, P., Balasvbramanigan, V., and Bewhurst, P. B., J. Am. chem. Soc., 91, 5930–5931 (1969).
Kropf, A., in Processing of Optical Data by Organisms and by Machines, Course 43, Proc. Int. School Phys. Enrico Fermi (edit. by Reichadi, W.), 28–43 (Academic, New York, 1969).
Honig, B., Warshel, A., and Karplus, M., Acc. chem. Res., 8, 92–100 (1975).
Warshel, A., and Karplus, M., J. Am. chem. Soc., 94, 5612–5625 (1972).
Warshel, A., and Levitt, M., Quantum Chemistry Program Exchange, Program No 247 (University of Indiana, Bloomington, 1973).
Warshel, A., and Karplus, M., J. Am. chem. Soc., 96, 5577–5689 (1974).
Warshel, A., and Karplus, M., Chem. Phys. Lett., 32, 11–17 (1975).
Warshel, A., and Levitt, M., J. molec. Biol. (in the press).
Tully, J. C., and Preston, A. K., J. chem. Phys., 55, 562–572 (1971).
Miller, W. H., and George, T. F., J. chem. Phys., 56, 5637–5652 (1972).
Abrahmson, E. W., and Ostroy, S. E., Prog. Biophys. molec. Biol., 11, 179–215 (1967).
Honig, B., and Karplus, M., Nature, 229, 558–560 (1971).
Kakitani, T., and Kakitani, H., J. Phys. Soc. Japan, 38, 1455–1463 (1975).
Yashizawa, T., and Wald, G., Nature, 214, 566–571 (1967).
Salem, L., and Bruckmann, P., Nature, 258, 526–528 (1975).
Thomson, A. J., Nature, 254, 178–179 (1975).
Wright, W., Brown, P., and Wald, G., J. gen. Physiol., 62, 509 (1973).
Alchalal, A., Honig, B., Ottolenghi, M., and Rosenfeld, T., J. Am. chem. Soc., 78, 2161–2166 (1975).
Yoshizawa, T., and Wald, G., Nature, 197, 1279–1286 (1963).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Warshel, A. Bicycle-pedal model for the first step in the vision process. Nature 260, 679–683 (1976). https://doi.org/10.1038/260679a0
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/260679a0
This article is cited by
-
Earliest molecular events of vision revealed
Nature (2023)
-
Ultrafast structural changes direct the first molecular events of vision
Nature (2023)
-
Retinal chromophore charge delocalization and confinement explain the extreme photophysics of Neorhodopsin
Nature Communications (2022)
-
Quantum–classical simulations of rhodopsin reveal excited-state population splitting and its effects on quantum efficiency
Nature Chemistry (2022)
-
Light activation of Orange Carotenoid Protein reveals bicycle-pedal single-bond isomerization
Nature Communications (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.