Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sister chromatid exchanges in ageing and repair-deficient human fibroblasts

Abstract

THE nature of the involvement of DNA repair in the formation of sister chromatid exchanges (SCEs) and their connection with chromosome aberrations is unknown. Some mutagens that damage DNA, including ultraviolet light and mitomycin C, considerably increase the incidence of SCEs1–6, whereas other agents, such as X rays6–8, nitrosoguanidine2 and 8-ethoxycaffeine5 cause only a slight increase, although they are potent inducers of lesions at the DNA and chromosome levels. Hamster cells infected with adenovirus 12 show no increased SCEs in spite of extensive fragmentation of the entire chromosome complement (our unpublished results). These findings suggest that the mechanism of formation of SCEs is not unitary. Whereas the mechanism of induction of SCEs could be studied by analysing their frequency after application of agents with known action on DNA, spontaneously occurring SCEs can be studied in cells with defects in the DNA repair system. This report deals chiefly with the frequency of spontaneous SCEs in several strains of xeroderma pigmenosum (XP) fibroblasts which show various levels of repair capacities, in Fanconi's anaemia (FA) cells and in control human cells at different stages of ageing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rommelaere, J., Suskind, M., and Errera, M., Chromosoma, 41, 243–257 (1973).

    Article  CAS  PubMed  Google Scholar 

  2. Kato, H., Expl Cell Res., 82, 383–390 (1973); 85, 239–247 (1974), 89, 416–420 (1974); Nature, 249, 552–553 (1974); 251, 70–72 (1974).

    Article  CAS  Google Scholar 

  3. Kato, H., and Shimada, H., Mutat. Res., 28, 459–464 (1975).

    Article  CAS  PubMed  Google Scholar 

  4. Latt, S. A., Proc. natn. Acad. Sci. U.S.A., 71, 3162–3166 (1974).

    Article  ADS  CAS  Google Scholar 

  5. Kihlman, B. A., Chromosoma, 51, 11–18 (1975).

    Article  CAS  Google Scholar 

  6. Perry, P., and Evans, H. J., Nature, 258, 121–125 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Marin, G., and Prescott, D. M., J. Cell Biol., 21, 159–167 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gatti, M., and Olivieri, G., Mutat. Res., 17, 101–112 (1973).

    Article  CAS  PubMed  Google Scholar 

  9. Stich, H. F., and San, R. H. C., Mutat. Res., 13, 279–282 (1971).

    Article  CAS  Google Scholar 

  10. Stich, H. F., San, R. H. C., Miller, J. A., and Miller, E. C., Nature new Biol., 238, 9–10 (1972).

    Article  CAS  PubMed  Google Scholar 

  11. Stich, H. F., Stich, W., and Lam, P., Nature, 250, 599–601 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Wolff, S., and Perry, P., Chromosoma, 48, 341–353 (1974).

    Article  CAS  PubMed  Google Scholar 

  13. Setlow, R. B., Regan, J. D., German, J., and Carrier, W. L., Proc. natn. Acad. Sci. U.S.A., 64, 1035–1041 (1969).

    Article  ADS  CAS  Google Scholar 

  14. Lehmann, A. R., et al., Proc. natn. Acad. U.S.A., 72, 219–223 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Sasaki, M. S., Nature, 257, 501–503 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Fujiwara, Y., and Tatsumi, M., Biochem. biophys. Res. Commun., 66, 592–598 (1975).

    Article  CAS  PubMed  Google Scholar 

  17. Poon, P. K., O'Brien, R. O., and Parker, J. W., Nature, 250, 223–225 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Wolff, S., Bodycote, J., Thomas, G. H., and Cleaver, J. E., Genetics, 81, 349–355 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chaganti, R. S. K., Schonberg, S., and German, J., Proc. natn. Acad. Sci. U.S.A., 71, 4508–4512 (1974).

    Article  ADS  CAS  Google Scholar 

  20. Saksela, E., and Moorhead, P. S., Proc. natn. Acad. Sci. U.S.A., 50, 390–395 (1963).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

KATO, H., STICH, H. Sister chromatid exchanges in ageing and repair-deficient human fibroblasts. Nature 260, 447–448 (1976). https://doi.org/10.1038/260447a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/260447a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing