Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Defective excision repair of γ-ray-damaged DNA in human (ataxia telangiectasia) fibroblasts

Abstract

ATAXIA telangiectasia (AT) (Louis–Bar syndrome) is a rare human neurovascular disease displaying an autosomal recessive pattern of inheritance1–3. Affected individuals, although clinically normal at birth, symptomatically develop cerebellar ataxia (loss of muscular coordination) and oculocutaneous telangiectasis (chronic dilation of the small blood vessels) in early childhood. The course of the disease follows a variable progression commonly leading to total neurological incapacitation before puberty. Accessory complications include lymphoreticular neoplasia2,3, bronchiectasis1,2, recurrent sinopulmonary infections1,2, decreased levels of serum immunoglobulins IgA and IgE (refs 3 and 4), impaired cellular immunity3,4, and widespread chromosomal instability5. AT patients, on receiving conventional radiotherapy for tumour treatment, tend to develop unusually severe complications often culminating in premature death6–8. Pronounced radiosenitivity is also observed at the cellular level in laboratory studies; the number of radiation-induced chromosomal aberrations is enhanced in leukocytes obtained from AT donors9. Moreover, diploid fibroblasts cultured from affected individuals exhibit a reduced ability to form colonies following exposure to γ radiation10 and radiomimetic chemicals11. Since the principal damage induced by both types of agents occurs in the DNA and seems to be acted on by the same enzymatic repair mechanisms12,13, it would seem probable that the molecular basis for the clinical radiosensitivity of AT patients stems from a deficient DNA repair mechanism. We therefore measured the DNA repair properties of AT fibroblasts after exposure to γ radiation. Data presented below provide direct biochemical evidence that diploid strains from AT donors are indeed impaired in DNA repair; in particular, these cell lines possess an enzymatic defect in an excision-type repair process operating on γ-modified nitrogenous base residues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Boder, E., and Sedgwick, R. P., Little Club clin. dev. Med., 8, 110–118 (1963).

    Google Scholar 

  2. Peterson, R. D., Kelly, W. D., and Good, R. A., Lancet, 1, 1189–1193 (1964).

    Article  CAS  PubMed  Google Scholar 

  3. Peterson, R. D. A., Cooper, M. D., and Good, R. A., Am. J. Med., 41, 342–359 (1966).

    Article  CAS  PubMed  Google Scholar 

  4. Strober, W., Wochner, R. D., Barlow, M. H., McFarlin, D. E., and Waldmann, T. A., J. clin. Invest., 47, 1905–1915 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Harnden, D. G., Chromosomes and Cancer (edit. by German, J.), 619–636 (Wiley, New York, 1974).

    Google Scholar 

  6. Gotoff, S. P., Amirmokri, E., and Liebner, E. J., Am. J. Dis. Childh., 114, 617–625 (1967).

    Article  CAS  Google Scholar 

  7. Morgan, J. L., Holcomb, T. M., and Morrissey, R. W., Am. J. Dis. Childh., 116, 557–558 (1968).

    CAS  Google Scholar 

  8. Cunliffe, P. N., Mann, J. R., Cameron, A. H., Roberts, K. D., and Ward, H. W. C., Br. J. Radial, 48, 374–376 (1975).

    Article  Google Scholar 

  9. Higurashi, M., and Conen, P. E., Cancer, 32, 380–383 (1973).

    Article  CAS  PubMed  Google Scholar 

  10. Taylor, A. M. R., et al., Nature, 258, 427–429 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Hoar, D. I., and Sargent, P., Am. J. hum. Genet. (in the press).

  12. Regan, J. D., and Setlow, R. B., Cancer Res., 34, 3318–3325 (1974).

    CAS  PubMed  Google Scholar 

  13. Cerutti, P. A., Life Sci., 15, 1567–1575 (1974).

    Article  CAS  PubMed  Google Scholar 

  14. Paterson, M. C., Lohman, P. H. M., and Sluyter, M. L., Mutat. Res., 19, 245–256 (1973).

    Article  CAS  PubMed  Google Scholar 

  15. Paterson, M. C., Adv. Radiat. Biol., 7, (in the press).

  16. Lohman, P. H. M., Sluyter, M. L., Matthijs, I. A. A., and Kleijer, W. J., Analyt. Biochem., 54, 178–187 (1973).

    Article  CAS  PubMed  Google Scholar 

  17. Paterson, M. C., and Setlow, R. B., Proc. natn. Acad. Sci. U.S.A., 69, 2927–2931 (1972).

    Article  ADS  CAS  Google Scholar 

  18. Cleaver, J. E., Adv. Radiat. Biol., 4, 1–75 (1974).

    Article  CAS  Google Scholar 

  19. Ham, R. G., Proc. natn. Acad. Sci. U.S.A., 53, 288–293 (1965).

    Article  ADS  CAS  Google Scholar 

  20. Vincent Jr., R. A., Sheridan III, R. B., and Huang, P. C., Mutat. Res., 33, 357–366 (1975).

    Article  PubMed  Google Scholar 

  21. Schneider, E. L., Stanbridge, E. J., and Epstein, C. J., Expl Cell Res., 84, 311–318 (1974).

    Article  CAS  Google Scholar 

  22. Strniste, G. F., and Wallace, S. S., Proc. natn. Acad. Sci U.S.A., 72, 1997–2001 (1975).

    Article  ADS  CAS  Google Scholar 

  23. Noguti, T., and Kada, T., Biochim. biophys. Acta, 395, 294–305 (1975).

    Article  CAS  PubMed  Google Scholar 

  24. Cleaver, J. E., Nature, 218, 652–656 (1968).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Carrier, W. L., and Setlow, R. B., J. Bact., 102, 178–186 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

PATERSON, M., SMITH, B., LOHMAN, P. et al. Defective excision repair of γ-ray-damaged DNA in human (ataxia telangiectasia) fibroblasts. Nature 260, 444–447 (1976). https://doi.org/10.1038/260444a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/260444a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing