Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Zebrafish organizer development and germ-layer formation require nodal-related signals

Abstract

The vertebrate body plan is established during gastrulation, when cells move inwards to form the mesodermal and endodermal germ layers. Signals from a region of dorsal mesoderm, which is termed the organizer, pattern the body axis by specifying the fates of neighbouring cells1,2. The organizer is itself induced by earlier signals1. Although members of the transforming growth factor-β (TGF-β) and Wnt families have been implicated in the formation of the organizer, no endogenous signalling molecule is known to be required for this process1. Here we report that the zebrafish squint (sqt)3 and cyclops (cyc)4 genes have essential, although partly redundant, functions in organizer development and also in the formation of mesoderm and endoderm. We show that the sqt gene encodes a member of the TGF-β superfamily that is related to mouse nodal. cyc encodes another nodal-related protein5,6, which is consistent with our genetic evidence that sqt and cyc have overlapping functions. The sqt gene is expressed in a dorsal region of the blastula that includes the extraembryonic yolk syncytial layer (YSL). The YSL has been implicated as a source of signals that induce organizer development and mesendoderm formation2,7. Misexpression of sqt RNA within the embryo or specifically in the YSL induces expanded or ectopic dorsal mesoderm. These results establish an essential role for nodal-related signals in organizer development and mesendoderm formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Disruption of mesoderm and endoderm in sqt;cyc double mutants.
Figure 2: The sqt gene encodes a nodal-related signal.
Figure 3: Microinjection of sqt RNA induces gsc expression in wild type and sqt mutants.
Figure 4: Expression of sqt mRNA in embryos at blastula and gastrula stages.

Similar content being viewed by others

References

  1. Harland, R. & Gerhart, J. Formation and function of Spemann's organizer. Annu. Rev. Cell Dev. Biol. 13, 611–667 (1997).

    Article  CAS  Google Scholar 

  2. Schier, A. F. & Talbot, W. S. The zebrafish organizer. Curr. Opin. Genet. Dev. 8, 464–471 (1998).

    Article  CAS  Google Scholar 

  3. Heisenberg, C. P. & Nüsslein-Volhard, C. The function of silberblick in the positioning of the eye anlage in the zebrafish embryo. Dev. Biol. 184, 85–94 (1997).

    Article  CAS  Google Scholar 

  4. Hatta, K., Kimmel, C. B., Ho, R. K. & Walker, C. The cyclops mutation blocks specification of the floor plate of the zebrafish central nervous system. Nature 350, 339–341 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Sampath, K.et al. Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling. Nature(in the press).

  6. Rebagliati, M. R., Toyama, R., Haffter, P. & Dawid, I. B. Cyclops encodes a nodal-related factor involved in midline signalling. Proc. Natl Acad. Sci. USA 95, 9932–9937 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Mizuno, T., Yamaha, E., Wakahara, M., Kuroiwa, A. & Takeda, H. Mesoderm induction in zebrafish. Nature 383, 131–132 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Thisse, C., Thisse, B., Halpern, M. E. & Postlethwait, J. H. goosecoid expression in neurectoderm and mesendoderm is disrupted in zebrafish cyclops gastrulas. Dev. Biol. 164, 420–429 (1994).

    Article  CAS  Google Scholar 

  9. Stachel, S. E., Grunwald, D. J. & Myers, P. Z. Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish. Development 117, 1261–1274 (1993).

    CAS  Google Scholar 

  10. Schulte-Merker, S., Ho, R. K., Herrmann, B. G. & Nüsslein-Volhard, C. The protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei of the germ ring and the notochord of the early embryo. Development 116, 1021–1032 (1992).

    CAS  Google Scholar 

  11. Strähle, U., Blader, P., Henrique, D. & Ingham, P. W. Axial, a zebrafish gene expressed along the developing body axis, shows altered expression in cyclops mutant embryos. Genes Dev. 7, 1436–1446 (1993).

    Article  Google Scholar 

  12. Schier, A. F., Neuhauss, S. C. F., Helde, K. A., Talbot, W. S. & Driever, W. The one-eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail. Development 124, 327–342 (1997).

    CAS  Google Scholar 

  13. Thisse, C., Thisse, B., Schilling, T. F. & Postlethwait, J. H. Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Development 119, 1203–1215 (1993).

    CAS  Google Scholar 

  14. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).

    Article  CAS  Google Scholar 

  15. Krauss, S., Johansen, T., Korzh, V. & Fjose, A. Expression of the zebrafish paired box gene pax [ zf-b ] during early neurogenesis. Development 113, 1193–1206 (1991).

    CAS  Google Scholar 

  16. Rebagliati, M. R., Toyama, R., Fricke, C., Haffter, P. & Dawid, I. B. Zebrafish nodal-related genes are implicated in axial patterning and establishing left-right asymmetry. Dev. Biol. 199, 261–272 (1998).

    Article  CAS  Google Scholar 

  17. Zhou, X., Sasaki, H., Lowe, L., Hogan, B. L. & Kuehn, M. R. Nodal is a novel TGF-β-like gene expressed in the mouse node during gastrulation. Nature 361, 543–547 (1993).

    Article  ADS  CAS  Google Scholar 

  18. Jones, C. M., Kuehn, M. R., Hogan, B. M. L., Smith, J. C. & Wright, C. V. E. Nodal-related signals induce axial mesoderm and dorsalize mesoderm during gastrulation. Development 121, 3651–3662 (1995).

    CAS  Google Scholar 

  19. Toyama, R., O'Connell, M. L., Wright, C. V. E., Kuehn, M. R. & Dawid, I. B. Nodal induces ectopic goosecoid and lim1 expression and axis duplication in zebrafish. Development 121, 383–391 (1995).

    CAS  Google Scholar 

  20. Conlon, F. L.et al. Aprimary requirement for nodal in the formation and maintenance of the primitive steak in the mouse. Development 120, 1919–1928 (1994).

    CAS  Google Scholar 

  21. Matzuk, M. M.et al. Functional analysis of activins during mammalian development. Nature 374, 354–356 (1995).

    Article  ADS  CAS  Google Scholar 

  22. Kanki, J. P. & Ho, R. K. The development of the posterior body in zebrafish. Development 124, 881–893 (1997).

    CAS  Google Scholar 

  23. Schneider, S., Steinbeisser, H., Warga, R. M. & Hausen, P. β-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech. Dev. 57, 191–198 (1996).

    Article  CAS  Google Scholar 

  24. Talbot, W. S.et al. Genetic analysis of chromosomal rearrangements in the cyclops region of the zebrafish genome. Genetics 148, 373–380 (1998).

    CAS  Google Scholar 

  25. Schier, A. F.et al. Mutations affecting the development of the embryonic zebrafish brain. Development 123, 165–178 (1996).

    CAS  Google Scholar 

  26. Postlethwait, J. H.et al. Vertebrate genome evolution and the zebrafish gene map. Nature Genet. 18, 345–349 (1998).

    Article  CAS  Google Scholar 

  27. Knapik, E. W.et al. Amicrosatellite genetic linkage map for zebrafish (Danio rerio). Nature Genet. 18, 338–343 (1998).

    Article  CAS  Google Scholar 

  28. Smith, W. C., McKendry, R., Ribisi, S. & Harland, R. M. Anodal-related gene defines a physical and functional domain within the Spemann organizer. Cell 82, 37–46 (1995).

    Article  CAS  Google Scholar 

  29. Joseph, E. M. & Melton, D. A. Xnr4 : a Xenopus nodal -related gene expressed in the Spemann organizer. Dev. Biol. 184, 367–372 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Erter, C. Wright, M. Rebagliati and I. Dawid for sharing and allowing us to cite their unpublished data; members of the Talbot and Schier laboratories for discussions; T. Lepage, D.Kimelman and C.-P. Heisenberg for reagents and fish stocks; S. McManus for fish care; and A. Ruiz i Altaba and G. Fishell for comments on the manuscript. We acknowledge postdoctoral fellowship support from the NIH (B.F. and H.I.S.) and ACS (S.T.D.). This work was supported by grants from the NIH (W.S.T. and A.F.S.) and an NYU Whitehead Fellowship (W.S.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William S. Talbot.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feldman, B., Gates, M., Egan, E. et al. Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 395, 181–185 (1998). https://doi.org/10.1038/26013

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/26013

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing