Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Diurnal rhythm in rat pineal cyclic nucleotide phosphodiesterase activity

Abstract

MANY substances in the rat pineal organ exhibit marked diurnal variations; some of these fluctuations are circadian, that is, cued but not driven by environmental lighting. The content of the pineal hormone melatonin1 for example, is seven- to tenfold higher during the dark phase of the diurnal cycle than during the light phase2. Similarly, the activities of the melatonin-synthesising enzymes 5-hydroxytryptarnine-N-acetyl transferase (NAT) and hydroxyindole-O-methyl transferase (HIOMT) are also higher in the dark (by factors of 15–70-fold and threefold, respectively3,4). The immediate precursor of melatonin, N-acetyl 5-HT is 10–30-fold higher in the dark than in the light5. In contrast the pineal content of the precursor of N-acetyl 5-HT, 5-HT is twofold higher in the light than in the dark phase of the diurnal cycle6, suggesting that changes in NAT activity regulate changes in melatonin biosynthesis. These changes have been shown to be controlled by environmental light acting through the retina by way of central nervous pathways to the superior cervical ganglion, and thence through postganglionic sympathetic fibres to the pineal body7. Nor-adrenaline released from these fibres acts on β adrenoceptors on the parenchymal pineal cells to stimulate adenylate cyclase, causing an increase in intracellular cyclic AMP which is followed by increased NAT activity and melatonin biosynthesis8,9. Decentralisation, superior cervical ganglionectomy, administration of β-adrenoceptor blocking drugs or protein synthesis inhibitors can all block the light–dark changes observed in NAT activity in this organ10,11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wurtman, R. J., Axelrod, J., and Kelly, D. E., The Pineal (Academic, New York, 1968).

    Google Scholar 

  2. Quay, W. B., Proc. Soc. exp. Biol. Med., 115, 710–716 (1964).

    Article  CAS  Google Scholar 

  3. Klein, D. C., and Weller, J. L., Science, 169, 1093–1095 (1970).

    Article  ADS  CAS  Google Scholar 

  4. Axelrod, J., Wurtman, R. J., and Snyder, S. H., J. biol. Chem., 240, 949–954 (1965).

    CAS  PubMed  Google Scholar 

  5. Klein, D. C., and Weller, J. L., Science, 177, 532–533 (1972).

    Article  ADS  CAS  Google Scholar 

  6. Quay, W. B., Gen. comp. Endocr., 3, 473–479 (1963).

    Article  CAS  Google Scholar 

  7. Wurtman, R. J., Axelrod, J., and Fischer, J. E., Science, 143, 1328–1330 (1964).

    Article  ADS  CAS  Google Scholar 

  8. Weiss, B., and Costa, E., J. Pharmac. exp. Ther., 161, 310–319 (1968).

    CAS  Google Scholar 

  9. Wurtman, R. J., Shein, H. M., and Larin, F., J. Neurochem., 18, 1683–1687 (1971).

    Article  CAS  Google Scholar 

  10. Axelrod, J., and Wurtman, R. J., Adv. Pharmac., 6, 157–166 (1968).

    Article  CAS  Google Scholar 

  11. Klein, D. C., The Neurosciences: Third Study Volume (edit. by Parker, K. O.), 509–515 (MIT Press, Cambridge, Massachusetts, 1973).

    Google Scholar 

  12. Minneman, K. P., and Iversen, L. L., Science (in the press).

  13. Thompson, W. J., and Appleman, M. M., Biochem., 10, 311–316 (1971).

    Article  CAS  Google Scholar 

  14. Lynch, T. J., and Cheung, W. Y., Analyt. Biochem., 67, 130–135 (1975).

    Article  CAS  Google Scholar 

  15. Uzunov, P., Revuelta, A., and Costa, E., Molec. Pharmac., 11, 506–510 (1975).

    CAS  Google Scholar 

  16. Oleshansky, M. A., and Neff, N. H., Molec. Pharmac., 11, 552–557 (1975).

    CAS  Google Scholar 

  17. Romero, J., and Axelrod, J., Science, 184, 1091–1093 (1974).

    Article  ADS  CAS  Google Scholar 

  18. Kebabian, J. W., Zatz, M., Romero, J. A., and Axelrod, J., Proc. natn. Acad. Sci. U.S.A., 72, 3735–3739 (1975).

    Article  ADS  CAS  Google Scholar 

  19. Romero, J. A., Zatz, M., Kebabian, J. W., and Axelrod, J., Nature, 258, 435–436 (1976).

    Article  ADS  Google Scholar 

  20. Deguchi, T., and Axelrod, J., Molec. Pharmac., 6, 612–618 (1973).

    Google Scholar 

  21. Weiss, B., and Costa, E., Science, 156, 1750–1752 (1967).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MINNEMAN, K., IVERSEN, L. Diurnal rhythm in rat pineal cyclic nucleotide phosphodiesterase activity. Nature 260, 59–61 (1976). https://doi.org/10.1038/260059a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/260059a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing