	NA1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
TnC DLC ALC	X-pro		lys	lys	ala	lys	arg	arg	ala	ala	Ac ala	-asp glu	thr gly	gin gly	gln ser	ala ser	glu asn	ala val	arg phe	SER SER A	tyr met c-ser	leu PHE PHE	SER asp SER
	23	24	25	A1	2	3	4	5	6	7	8	9	10	11	abl	2	3	4	5	6	7	8	9
TnC DLC ALC	glu gln ala	glu thr asp	met GLN GLN	ILE ILE ILE	ALA gln ALA	GLU GLU GLU	PHE PHE PHE	LYS LYS LYS	ala GLU GLU	ALA ALA ALA	PHE PHE PHE	asp thr leu	met val leu	phe ile tyr	ASP ASP ASP	ala gln arg	asp asn thr	GLY arg GLY	gly asn asp	GLY GLY ser	asp ile lys	ILE ILE ILE	ser asp thr
	B 1	2	3	4	5	6	7	8	9	10 *	11 *	bcl	2	*	3	4	5	Cl	2	3	4	5	6
TnC DLC ALC CBP	val lys leu	lys glu ser	glu asp gln	LEU LEU val	GLY arg GLY	thr ASP ASP	VAL thr VAL	met phe leu	ARG ala ARG Ac	met ALA ALA -ALA	LEU MET LEU MET	GLY GLY GLY thr	gln arg thr glu	leu 	thr ASN ASN leu	PRO val PRO leu	THR lys THR asn	lys glu asn ala	GLU GLU ala GLU	GLU ASP GLU ASP	LEU LEU val ile	ASP ASP LYS LYS	ALA ALA LYS LYS
	7 *	8		9	10	11	cdl	2	3	4	5	6	7		8	9	Dl	2	3	4	5	6	7
TnC DLC ALC CBP	ile met val ala	ILE leu ILE	gly	glu asn gly	glu — pro ala	val ser phe	ASP ASP	GLU lys GLU ala	<u>asp</u> glu gln ala	gly ALA met ALA	SER SER asn glu	GLY GLY ala ser	thr pro lys	lys	ILE ILE ILE phe	ASP asn glu ASP	PHE PHE PHE his	GLU thr GLU lys	glu val gln lys	PHE PHE PHE PHE	LEU LEU LEU phe	val thr pro gln	MET MET MET MET
	8	9	10	11	12	del	2	3	4	5	6	7	8	El	2	3	4	5	6	7	8	9	10
Tnc DLC ALC CBP	MET MET leu val	val phe glu	arg gly ala	gln glu ile	met 	LYS LYS ser	glu leu asn	asp lys asn gly	ala LYS LYS leu	LYS gly asp LYS	gly ala gln lys	LYS asn gly LYS	SER pro thr SER	GLU GLU tyr thr	GLU asp GLU GLU	glu val ASP ASP	leu ile phe val	ala thr val lys	GLU gly GLU lys	cys ala gly val	PHE PHE leu PHE	ARG lys ARG his	ILE VAL VAL ILE
	11	efi	2	3	4	5	6	7	8	9	F1	2	3	4	5	6	7	8	9	10	11 *		
TnC DLC ALC CBP	PHE LEU PHE LEU	ASP ASP ASP <u>ASP</u>	arg pro LYS LYS	asn GLU GLU asp	ala GLY GLY lys	<u>ASP</u> lys ASP <u>ser</u>	GLY GLY thr GLY	tyr thr val phe	ILE ILE gly ILE	asp lys met glu	ala lys gly glu	GLU gln ala GLU	<u>GLU</u> phe GLU <u>GLU</u>	LEU LEU LEU LEU	ala glu arg gly	GLU GLU his phe	ILE leu val ILE	phe LEU LEU LEU	arg thr ala lys	ala THR THR gly	ser gln leu phe	 ser	 pro
		fgl	2	3	4	5	G1	2	3	4	5	6	7 *	8	9	10	11	ghl	2	3	4	5	6
TnC DLC ALC CBP	 asp	GLY cys GLY ala	GLU asp GLU arg	his arg lys asp	val phe met leu	thr SER lys SER	asp gln glu val	GLU GLU GLU lys	GLU GLU GLU GLU	ILE ILE val thr	GLU LYS GLU LYS	ser asn ala thr	LEU met LEU LEU	MET trp MET MET	ALA ALA	asp ALA ALA ALA	GLY phe GLY GLY	ASP pro gln ASP	LYS pro glu LYS	ASP ASP ASP ASP	asn val ser gly	ASP gly asn ASP	GLY GLY GLY GLY
	7	8	9	HI	2	3	4	5	6	7	8	9	10	11	12								
TnC DLC ALC CBP	arg asn cys lys	ILE val ILE ILE	<u>ASP</u> ASP asn gly	phe TYR TYR ala	ASP lys glu ASP	<u>GLU</u> asn ala <u>GLU</u>	PHE ile PHE PHE	leu cys val ser	LYS tyr LYS thr	met val his leu	met ILE ILE val	glu thr met ser	gly his ser glu	val gly ile- ser-	gin- asp OH OH	OH ala	lys	asp	glu	gln-	он		

Fig. 1 Alignment of the complete amino acid sequences of rabbit white skeletal muscle troponin C (TnC), myosin DTNB light chain (DLC), myosin alkali light chain (ALC) and Ca^{2+} -binding parvalbumin (CBP). Amino acid residues are numbered in accordance with the predicted three-dimensional structure of TnC: helices are denoted A to H, from the amino to the carboxyl termini; interhelical loops are called ab, bc, and so on; residues preceding helix A are designated NA. Residues identical in two or more proteins are in capital letters, and those presumed to be involved in Ca²⁺ binding are underlined. Asterisks indicate residues predicted to form the hydrophobic core of TnC.

systems? What differences cause TnC to bind to troponin I and troponin T in the thin filaments, whereas ALC and DLC bind to myosin heavy chains in the thick filaments? These questions bring to mind Laki's proposal³⁰, that myosin could be considered as a complex of actin and tropomyosin (troponin had not then been discovered).

This work was supported by grants from the American Heart Association, Massachusetts Affiliate, Inc., and the NIH

JOHN H. COLLINS

Department of Muscle Research, Boston Biomedical Research Institute, Boston, Massachusetts 02114

Received October 20, 1975; accepted January 2, 1976.

- Lehman, W., and Szent-Györgyi, A. G., J. gen. Physiol., 66, 1-30 (1975).
 Weber, A., and Murray, J. M., Physiol. Rev., 53, 612-673 (1973).
 Szent-Györgyi, A. G., Biophys. J., 15, 707-723 (1975).
 Weeds, A. G., Nature, 223, 1362-1364 (1969).
 Weeds, A. G., and Lowey, S., J. molec. Biol., 61, 701-725 (1971).
 Werber, M. M., Gaffin, S. L., and Oplatka, A., J. mechanochem. cell. Motil., 1, 91-96 (1972).
 Gaffin, S. L., and Oplatka, A., J. Biochem., 75, 277-281 (1974).
 Werber, M. M., and Oplatka, A., Biochem. biophys. Res. Commun., 57, 823-830 (1974).
- (1974)

- (1974).
 9 Huxley, H. E., Cold Spring Harb. Symp. quant. Biol., 37, 361-376 (1972).
 10 Morimoto, K., and Harrington, W. F., J. molec. Biol., 88, 693-709 (1974).
 11 Balint, M., Sreter, F. A., Wolf, I., Nagy, B., and Gergely, J., J. biol. Chem., 250, 6168-6177 (1975).
 12 Potter, J. D., Fedn Proc., 34, 671 (1975).
 13 Kendrick-Jones, J., Szentkiralyi, E. M., and Szent-Györgyi, A. G., Cold Spring Harb. Symp. quant. Biol., 37, 47-53 (1972).
 14 Szent-Györgyi, A. G., Szentkiralyi, E. M., and Kendrick-Jones, J., J. molec. Biol., 74, 179-203 (1973).
 15 Kendrick-Jones, J., Nature, 249, 631-634 (1974).
 16 Collins, J. H., Potter, J. D., Horn, M. J., Wilshire, G., and Jackman, N., FEBS

Lett., 36, 268-272 (1973); in Calcium Binding Proteins (edit. by Drabikowski, W., Strzelecka-Golaszewska, H., and Carafoli, E.), 51-64 (Elsevier, Amsterdam, 1974).

- Torota Construction (Construction) (Co

- ²⁵ Collins, J. H., In Calcium in Biological Systems (Calubridge Chivessy, 1.2.4, the press).
 ²⁶ Kretsinger, R. H., and Nockolds, C. E., J. biol. Chem., 248, 3313-3326 (1973).
 ²⁷ Frank, G., and Weeds, A. G., Eur, J. Biochem., 44, 317-334 (1974).
 ²⁸ Enfield, D. L., Ericson, L. H., Blum, H. E., Fischer, E. H., and Neurath, H., Proc. natn. Acad. Sci. U.S.A., 72, 1309-1313 (1975).
 ²⁹ Perrie, W. T., Smillie, L. B., and Perry, S. V., Biochem. J., 135, 151-164 (1973).
 ³⁰ Laki, K., J. cell. comp. Physiol., 49, 249-265 (1957).

Erratum

In the article "Entropy production in black holes" by W. Kundt (Nature, 259, 30; 1976) the second paragraph should read:

To begin with, it must be remembered that in 'normal' conditions, matter has an entropy per particle $s \sim 1$ $(s = SN^{-1}k^{-1}$ where N = particle number): s varies between ~ $T/T_{\rm F} \lesssim 1$ (for temperatures T below the Fermi temperature $T_{\rm F}$) and $\lesssim 90$ (for dispersed hydrogen of critical cosmological density at $\gtrsim 10^8$ K); $s \sim 4$ for an extreme relativistic ideal gas ... S_{bh} is $10^{19} (M/M_{\odot})$ times larger than S at formation.

The second s^a in line 6 and s^a in line 15 of paragraph 4 should read $s^{a}_{;a}$, the divergence of s^{a} .