Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The presence of Na–Na and Na–K exchange in sodium extrusion by three species of fish

Abstract

ALTHOUGH it has been generally assumed that marine teleost fish balance the net influx of NaCl (from diffusional gain and oral ingestion of seawater) by active extrusion of both ions1–3, the proposition of active extrusion of Na has been questioned. It has been shown4–11 that marine teleosts generally maintain a transepithelial potential (t.e.p.) in the range +10−+25 mV (blood relative to seawater), which is nearly equal to that which could nullify the Na concentration gradient between the teleost and seawater. Thus, it has been suggested that Na is maintained in electrochemical equilibrium across the teleost gill and only Cl is actively extruded4,6–8,12. The Na efflux changes accompanying rapid changes in external Na or K concentrations have been used to support a model of both Na–Na and Na–K exchanges13–16, and have been shown to result at least partially from changes in the t.e.p. (refs 7–9, 12) rather than uncoupling of ionic exchange systems. Histochemical localisation of the Na–K-activated ATPase in teleost gill tissue indicates that it is predominantly basal rather than apical17,18. This suggests that the enzyme may be involved in gill cell volume regulation rather than transepithelial extrusion of Na.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Smith, H. W., Am. J. Physiol., 93, 480–505 (1930).

    Article  CAS  Google Scholar 

  2. Conte, F. P., in Fish Physiology, 1, (edit. by Hoar, W. S., and Randall, D. J.), 241–292 (Academic, New York, 1969).

    Google Scholar 

  3. Maetz, J., Phil. Trans. R. Soc., B 262, 209–251 (1971).

    Article  CAS  Google Scholar 

  4. House, C. R., J. exp. Biol., 40, 87–104 (1963).

    CAS  Google Scholar 

  5. Maetz, J., and Campanini, J. Physiol., Paris, 58, 248 (1966).

    Google Scholar 

  6. Evans, D. H., J. exp. Biol., 50, 179–190 (1969).

    CAS  PubMed  Google Scholar 

  7. Potts, W. T. W., and Eddy, F. B., J. comp. Physiol., 87, 29–48 (1973).

    Article  Google Scholar 

  8. House, C. R., and Maetz, J., Comp. Biochem. Physiol., 47 A, 917–924 (1974).

    Article  CAS  Google Scholar 

  9. Evans, D. H., Carrier, J. C., and Bogan, M. B., J. exp. Biol., 61, 277–283 (1974).

    CAS  PubMed  Google Scholar 

  10. Greenwald, L., Kirschner, L. B., and Sanders, M., J. gen. Physiol., 64, 135–147 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Maetz, J., and Pic, P., J. Physiol., Paris, 69, 270A (1974).

    Google Scholar 

  12. Kirschner, L. B., Greenwald, L., and Sanders, M., J. gen. Physiol., 64, 148–165 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Motais, R., Garcia Romeu, F., and Maetz, J., J. gen. Physiol., 50, 391–422 (1966).

    Article  CAS  Google Scholar 

  14. Maetz, J., Science, 166, 613–615 (1969).

    Article  ADS  CAS  Google Scholar 

  15. Motais, R., and Isaia, J., J. exp. Biol., 57, 367–373 (1972).

    CAS  Google Scholar 

  16. Evans, D. H., Mallery, C. H., and Kravitz, L., J. exp. Biol., 58, 627–636 (1973).

    CAS  Google Scholar 

  17. Shiri, N., J. Fac. Sci. Univ. Tokyo, Sec. VI, 12, 385–403 (1972).

    Google Scholar 

  18. Stirling, C. E., Karnaky, K. J., Kinter, L. B., and Kinter, W. B., Bull. Mt Desert Isl. biol. Lab., 13, 117–120 (1973).

    Google Scholar 

  19. Maetz, J., in Biochemical and Biophysical Perspectives in Marine Biology, (edit. by Malins, D. C. and Sargent, J. R.), 1–167 (Academic, New York, 1974).

    Google Scholar 

  20. Holmes, W. N., and Donaldson, E. M., in Fish Physiology, 1, (edit. by Hoar, W. S. and Randall, D. J.), 1–89 (Academic, New York, 1969).

    Google Scholar 

  21. Eddy, F. B., J. comp. Physiol., 96, 131–142 (1975).

    Article  CAS  Google Scholar 

  22. Pic, P., and Maetz, J., C.r. hebd. Séanc. Acad. Sci. Paris, 280, 983–985 (1975).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

EVANS, D., COOPER, K. The presence of Na–Na and Na–K exchange in sodium extrusion by three species of fish. Nature 259, 241–242 (1976). https://doi.org/10.1038/259241a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/259241a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing