
Nature © Macmillan Publishers Ltd 1998

8

in body size6 — a relationship that is known
as ‘energy equivalence’ because the –3/4
exponent indicates that population energy-
use per unit area is independent of body
mass. 

Enquist et al. have shown that plant
species of all sizes can achieve the same
rates of local resource use. The energy
equivalence relationship may thus be one 
of the most widespread of ecological
regularities, yet we have no satisfactory
explanation of its origin and maintenance.
What prevents evolution from producing
species that routinely violate it? Now 
that the relationship has been identified 
in plants as well as animals, the answer

becomes that much more interesting. It also
suggests that the explanation (if there is a
single one) must be very general.
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100 YEARS AGO
Readers of prospectuses of educational
institutions and polytechnics may have
noticed that of late years there has been
a tendency to convert the teachers into
professors. The nature of the institution
in which the instructors can rightly use
the latter title is apparently a matter of
opinion, and it is becoming worth while
to define the duties and position of a
professor. Miss Catherine Dodd describes
in the National Review how she asked
105 primary school children, between the
ages of ten and fourteen, to give this
definition, among others.  Here are some
of the attempts: — “A man who has
passed a high examination.” “A very
clever man.” “One who can do his work
easily.” “A man skilled in sense.” That a
professor has a certain social standing is
evident from the definitions which
describe him as “a man who is well off,”
and “a man who lives in a nice house.”
Among the vague definitions are the
following: — “A person who professes to
do something.” “A man who says he can
do anything.” But the children’s general
idea is that a professor teaches music,
dancing, or languages, or performs
conjuring tricks. Thus, “A professor
teaches all kinds of instruments.” “He is
a gentlemen that generally plays at balls,”
and “a man who knows clever tricks.” To
correctly define a professor would
probably prove a difficulty to many
children of older growth.
From Nature 8 September 1898.

50 YEARS AGO
In the editorial article in Nature of August
14, in criticizing a recent statement of the
Atomic Scientists’ Association, it is
argued that collaboration between
scientific men east and west of the ‘Iron
Curtain’ may be undesirable, because it
is likely “to promote, for the present, a
one-way traffic to the disadvantage of the
Western democracies” … It is stated in
the editorial that the man of science in
totalitarian countries is essentially a
servant of the State, and that it is treason
for him to divulge any knowledge save as
the State allows. But in fact this
statement is true only in the opinions of
the men who control the Government of
the U.S.S.R.; we may be sure that most
scientific men in the satellite countries
would not take that view of their 
functions. — N. F. Mott.
From Nature 11 September 1948.

One of the most fundamental results
in classical mechanics is that linear
systems with n degrees of freedom

have n fundamental modes of vibration, and
that any motion of the systems can be
obtained as a linear combination of these
fundamental modes. This combination
principle does not hold for nonlinear sys-
tems, but one suspects that a few periodic
solutions will play a part akin to the funda-
mental modes. In one case, that suspicion
has now been confirmed: H. Hofer, K.
Wysocki and E. Zehnder1 have proved that
so-called convex systems with two degrees 
of freedom must have either two periodic
orbits for a given energy, or infinitely many
— they cannot have three, or twenty thou-
sand, or a billion.

To appreciate the meaning of this result,
begin by considering linear systems with two
degrees of freedom, such as the weight fixed
to springs in Fig. 1. They can always be
described in terms of two harmonic oscilla-
tors, with periods T1 and T2. If the two 
periods have a common multiple, that is, if
aT1 = bT2 = T for some pair of integers a and
b, then every motion is periodic, with period
T. But if there is no common period then
there are exactly two periodic motions, with 
periods T1 and T2, in which one of the oscilla-
tors is active and the other is shut down. All
other motions arise from superimposing
both oscillators, and give rise to the well-
known Lissajous curves, which are aperiodic.

You should try to visualize this in its four-
dimensional phase space (p1, p2, q1, q2),
where p is momentum and q is position. The
potential energy of the system is V =
2p2(q1

2/T1
2 + q2

2/T2
2), and its total energy, or

Hamiltonian, is H = 1/2(p1
2 + p2

2) + V. The
surfaces of constant energy are three-dimen-
sional ellipsoids, around which wind the tra-
jectories of the motion. If T1/T2 is rational, all
these trajectories are closed, corresponding

to periodic motions. If T1/T2 is irrational,
then there are only two closed trajectories for
any energy, corresponding to the two funda-
mental modes of vibration; all other trajec-
tories are open, filling the whole constant-
energy surface. This picture extends simply
to any number of degrees of freedom.

But how does it extend to nonlinear 
systems2? Consider a convex potential V
defined in n-dimensional Euclidean (flat)
space, such that V goes to infinity at infinity.
In phase space, the Hamiltonian is still 
H = 1/2(p1

2 + p2
2) + V, and the constant-

energy surfaces are convex and bounded.
The corresponding mechanical system is a 

Mathematics

Nonlinear modes of vibration
Ivar Ekeland

Figure 1 A dynamical system with two degrees of
freedom. A mass is held by springs; strong ones
in one direction, weak in the other. It can
oscillate up and down rapidly, or side to side
slowly, or in more complicated two-dimensional
patterns. If the force in the springs depends
linearly on their displacement, then lines of
constant potential energy V are ellipses, and all
the trajectories are well understood. The
nonlinear problem is more difficult, but it has
now been proved for a large class of systems that
there must either be two periodic trajectories, or
an infinity.

V = constant Strong spring

Weak spring
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system of n linked nonlinear springs. 
It has already been proved that, for non-

linear systems of this kind, every energy has
at least two periodic solutions. Drawing a
parallel with the linear case, we might guess
that a nonlinear system with n degrees of
freedom would carry at least n periodic 
solutions. That is unproved, but might well
be true; it is what mathematicians call a 
conjecture.

This conjecture raises a question about
the global behaviour of nonlinear systems.
Much of what is known about nonlinear sys-
tems arises from perturbation theory, and
gives results valid only for small values of
some parameter. There is nothing of the kind
here — instead we are asking whether we can
build some specific nonlinear system that
has only so many periodic solutions; in other
words, we have to understand the dynamics
not locally, but on the whole of the energy
level. Unfortunately, systems whose trajecto-
ries can be written explicitly in terms of the
initial data and elapsed time are rare. So 
to prove results about general nonlinear 
systems one cannot make explicit com-
putations but must resort to other, more
geometrical, methods.

As I mentioned before, fixing the energy
level to some constant yields a three-dimen-
sional hypersurface that is followed by any
trajectory. Hofer et al.1 then find, by varia-
tional methods, the periodic trajectory t that
is in some sense the simplest (in the linear
case, it would be the one with the shortest
period). Then they show using the theory of
partial differential equations that t defines
the boundary of a two-dimensional disk D
through which all trajectories must pass
(Fig. 2). If, for instance, P is a point on the
disk D itself, the trajectory issuing from P

will hit D at some other point Q, thereby
defining a map from D into itself. This map
turns out to be area-preserving, and it is
known that such a map must have either 
one fixed point (corresponding to one more
periodic orbit of the flow) or infinitely many.

Clearly, the proof does not carry over to
higher dimensions: if there are more than
two degrees of freedom, then the energy 
level will be five-dimensional or more; and
although we could still find a periodic trajec-
tory with much the same variational proper-
ties as t, the two-dimensional disk spanning
this closed orbit will not catch all the remain-
ing trajectories because they have too many
dimensions to move in. So the correspond-
ing conjecture, that every convex Hamilton-
ian system with n degrees of freedom must
carry n periodic orbits or infinitely many,
remains open.

To show again that all this is far from

obvious, let us ask another question: what
systems have n periodic orbits only? One
example is the linear case of harmonic oscil-
lators with no common period. Is there any-
thing else? Michael Herman (personal com-
munication) has shown that there is: for any
n, there exists a convex system with n
degrees of freedom that has exactly n
periodic orbits on a prescribed energy level,
and which cannot be decomposed into n
independent harmonic oscillators by any
change of variables. In spite of their non-
linearity, general convex Hamiltonian 
systems still preserve some of the features of
harmonic oscillators.
Ivar Ekeland is at the University of Paris-Dauphine,
75775 Paris Cedex 16, France.
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Figure 2 Trajectories in phase space. For a convex
nonlinear system with two degrees of freedom,
all trajectories pass through a disk, D. The
trajectory leaving point F returns to the same
point (perhaps after crossing the disk several
times), so it is periodic; but the one leaving point
P returns to Q, and will continue to meander
through the allowed region of phase space
aperiodically.
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HIV

Setting death in motion
Jean Claude Ameisen

Cell motion, an essential component of
embryonic development, continues
to be important throughout life. The

immune system constantly patrols our bod-
ies, checking for infectious pathogens then
regrouping cells to attack at sites of invasion.
This complex choreography is controlled 
by a range of chemokines (and chemokine
receptors), which induce and guide the
movement of cells along chemokine con-
centration gradients1. But, as reported by
Herbein et al.2 (on page 189 of this issue) and
Hesselgesser et al.3 (in Current Biology),
chemokines may also act as death signals.
And subversion of such signals by the human
immunodeficiency virus (HIV) may partici-
pate in the development of disease. 

An intriguing feature of HIV patho-
genesis is this. How does the virus induce
programmed cell death (apoptosis) not
only in the population of T cells that bears
the CD4 receptor (which is required for
viral entry), but also in other cell types? For
example, HIV causes the death of CD8+

antiviral effector T cells in the immune
system, and neurons in the brain, leading 
to immune exhaustion and dementia,
respectively4. 

We know that infection by HIV-1
requires binding of its surface envelope
protein, Env, to both the CD4 receptor and
a chemokine receptor1. Strains of HIV-1
that are prevalent during the first years of
asymptomatic infection bind to members
of the CCR chemokine-receptor family,
whereas strains that become prevalent at
the onset of disease bind the CXCR4
chemokine receptor. Thus, chemokines
may have a beneficial effect by acting as

natural antagonists of HIV infection in
CD4+ cells. But, unlike CD4 molecules,
chemokine receptors are widely expressed
in both the immune system and the brain. 

Herbein et al.2 and Hesselgesser et al.3

now show that the Env protein from X4
strains of HIV-1 (that bind CXCR4), and
the natural CXCR4 ligand stromal-derived
factor-1 (SDF-1), can induce apoptosis in
vitro in CD8+ T cells2 and in a neuronal cell
line3. Moreover, Herbein et al. reveal that
the death pathway downstream of CXCR4
signalling in CD8+ T cells is a complex and
dynamic process. It involves crosstalk with
another population of immune cells, the
macrophages, and operates through the
tumour-necrosis factor-a (TNF-a)/TNF-
receptor II (TNFRII) death-transducing
pathway (Fig. 1, overleaf). 

Signalling by CXCR4 induces the surface
expression of TNF-a in macrophages, 
and TNFRII in CD8+ T cells. Subsequent
contact between the macrophages and T
cells then triggers T-cell death. Although
Herbein et al. detected only a low
percentage of apoptotic CD8+ T cells, cell
loss was high — most of the apoptotic
corpses were probably ingested by
macrophages, rapidly clearing the scene5.
Interestingly, this Env-induced death of
CD8+ T cells through CXCR4 and then
TNF-a/TNFRII signalling, resembles the
Env-induced death of CD4+ T cells through
CD4 and then Fas ligand (FasL)/Fas
receptor signalling6. Death of CD4+ T cells
also involves the (optional) recruitment of
macrophages7. Moreover, TNF-a/TNFRII
and FasL/Fas belong to the same family of
death-transducing ligand/receptor pairs,
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