Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A critical window for cooperation and competition among developing retinotectal synapses

Abstract

In the developing frog visual system, topographic refinement of the retinotectal projection depends on electrical activity. In vivo whole-cell recording from developing Xenopus tectal neurons shows that convergent retinotectal synapses undergo activity-dependent cooperation and competition following correlated pre- and postsynaptic spiking within a narrow time window. Synaptic inputs activated repetitively within 20 ms before spiking of the tectal neuron become potentiated, whereas subthreshold inputs activated within 20 ms after spiking become depressed. Thus both the initial synaptic strength and the temporal order of activation are critical for heterosynaptic interactions among convergent synaptic inputs during activity-dependent refinement of developing neural networks.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vivo whole-cell recording from Xenopus tadpole brain.
Figure 2: Effects of repetitive stimulation of one of two convergent retinal inputs.
Figure 3: Effects of repetitive synchronous co-stimulation of two convergent retinal inputs.
Figure 4: Effects of repetitive asynchronous co-stimulation of two convergent retinal inputs.
Figure 5: The critical window for synaptic potentiation and depression.
Figure 6: Effects of postsynaptic hyperpolarizations.

Similar content being viewed by others

References

  1. Goodman, C. & Shatz, C. J. Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72, 77–98 (1993).

    Article  Google Scholar 

  2. Katz, L. C. & Shatz, C. J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Hubel, D. H. & Wiesel, T. N. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol. (Lond.) 206, 419–436 (1970).

    Article  CAS  Google Scholar 

  4. LeVay, S., Hubel, D. H. & Wiesel, T. N. The development of ocular dominance columns in normal and visually deprived monkeys. J. Comp. Neurol. 191, 1–51 (1980).

    Article  CAS  Google Scholar 

  5. Stryker, M. P. & Harris, W. A. Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex. J. Neurosci. 6, 2117–2133 (1986).

    Article  CAS  Google Scholar 

  6. Shatz, C. J. & Stryker, M. P. Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents. Science 242, 87–89 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Stryker, M. P. & Strickland, S. L. Physiological segregation of ocular dominance columns depends on the pattern of afferent electrical activity. Invest. Ophthalmol. Vis. Sci. 25 (Suppl.), 278 (1984).

    Google Scholar 

  8. Weliky, M. & Katz, L. C. Disruption of orientation tuning in visual cortex by artificially correlated neuronal activity. Nature 386, 680–685 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Udin, S. B. & Fawcett, J. W. Formation of topographic maps. Annu. Rev. Neurosci. 11, 289–297 (1990).

    Article  Google Scholar 

  10. Holt, C. E. & Harris, W. A. Position, guidance and mapping in the developing visual system. J. Neurobiol. 24, 1400–1422 (1993).

    Article  CAS  Google Scholar 

  11. Harris, W. A. The effects of eliminating impulse activity on the development of the retinotectal projection in salamanders. J. Comp. Neurol. 194, 303–317 (1980).

    Article  CAS  Google Scholar 

  12. Reh, T. A. & Constantine-Paton, M. Eye-specific segregation requires neural activity in three-eyed Rana pipiens. J. Neurosci. 5, 1132–1143 (1985).

    Article  CAS  Google Scholar 

  13. Schmidt, J. T. & Buzzard, M. Activity-driven sharpening of the retinotectal projection in goldfish: development under stroboscopic illumination prevents sharpening. J. Neurobiol. 24, 384–399 (1993).

    Article  CAS  Google Scholar 

  14. Brickley, S. G., Dawes, E. A., Keating, M. J. & Grant, S. Synchronizing retinal activity in both eyes disrupts binocular map development in the optic tectum. J. Neurosci. 18, 1491–1504 (1998).

    Article  CAS  Google Scholar 

  15. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  16. Rae, J., Cooper, K., Gates, P. & Watsky, M. Low access resistance perforated patch recordings using amphotericin B. J. Neurosci. Methods 37, 15–26 (1991).

    Article  CAS  Google Scholar 

  17. Wu, G.-Y., Malinow, R. & Cline, H. T. Maturation of a central glutamatergic synapse. Science 274, 972–976 (1996).

    Article  ADS  CAS  Google Scholar 

  18. Hickmott, P. W. & Constantine-Paton, M. The contribution of NMDA, non-NMDA, and GABA receptors to postsynaptic responses in neurons of the optic tectum. J. Neurosci. 13, 4339–4353 (1993).

    Article  CAS  Google Scholar 

  19. Sakaguchi, D. S. & Murphey, R. K. Map formation in the developing Xenopus retinotectal system: an examination of ganglion cell terminal arborizations. J. Neurosci. 5, 3228–3245 (1985).

    Article  CAS  Google Scholar 

  20. O'Rourke, N. A. & Fraser, S. E. Dynamic changes in optic fiber terminal arbors lead to retinotopic map formation: an in vivo confocal microscopic study. Neuron 5, 159–171 (1990).

    Article  CAS  Google Scholar 

  21. Lo, Y. & Poo, M.-m. Activity-dependent synaptic competition in vitro: Heterosynaptic suppression of developing synapses. Science 254, 1019–1022 (1991).

    Article  ADS  CAS  Google Scholar 

  22. Cline, H. T., Debski, E. & Constantine-Paton, M. N-methyl-D-aspartate receptor antagonists desegregates eye-specific stripes. Proc. Natl Acad. Sci. USA 84, 4342–4345 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Cline, H. T. & Constantine-Paton, M. NMDA receptor antagonists disrupt the retinotectal topographic map. Neuron 3, 413–426 (1989).

    Article  CAS  Google Scholar 

  24. Schmidt, J. T. Long-term potentiation and activity-dependent retinotopic sharpening in the regenerating retinotectal projection of goldfish: common sensitive period and sensitivity to NMDA blockers. J. Neurosci. 10, 233–246 (1990).

    Article  CAS  Google Scholar 

  25. Bliss, T. V. & Collingridge, G. L. Asynaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  ADS  CAS  Google Scholar 

  26. Malenka, R. C. Synaptic plasticity in the hippocampus: LTP and LTD. Cell 78, 535–538 (1994).

    Article  CAS  Google Scholar 

  27. Artola, A. & Singer, W. Long-term potentiation and NMDA receptors in rat visual cortex. Nature 330, 649–652 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Komatsu, Y., Fujii, K., Maeda, J., Sakaguchi, H. & Toyama, K. Long-term potentiation of synaptic transmission in kitten visual cortex. J. Neurophysiol. 59, 124–141 (1988).

    Article  CAS  Google Scholar 

  29. Bear, M. F., Press, W. A. & Connors, B. W. Long-term potentiation in slices of kitten visual cortex and the effects of NMDA receptor blockade. J. Neurophysiol. 67, 1–11 (1992).

    Article  Google Scholar 

  30. Hahm, J. O., Langdom, R. B. & Sur, M. Disruption of retinogeniculate afferent segregation by antagonists to NMDA receptors. Nature 351, 568–570 (1991).

    Article  ADS  CAS  Google Scholar 

  31. Mooney, R., Madison, D. V. & Shatz, C. J. Enhancement of transmission at the developing retinogeniculate synapse. Neuron 10, 815–825 (1993).

    Article  CAS  Google Scholar 

  32. Markram, H., Lubke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997).

    Article  CAS  Google Scholar 

  33. Magee, J. C. & Johnston, D. Asynaptically controlled, associative signal for hebbian plasticity in hippocampal neuron. Science 275, 209–213 (1997).

    Article  CAS  Google Scholar 

  34. Debanne, D., Gähwiler, B. H. & Thompson, S. M. Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures J. Physiol. 507, 237–247 (1998).

    Article  CAS  Google Scholar 

  35. Naveu, D. & Zucker, R. S. Postsynaptic levels of [Ca2+]i needed to trigger LTD and LTP. Neuron 16, 619–629 (1996).

    Article  Google Scholar 

  36. Hebb, D. H. The Organization of Behavior (Wiley, New York, (1949)).

    Google Scholar 

  37. Stent, G. S. Aphysiological mechanism for Hebb's postulate of learning. Proc. Natl Acad. Sci. USA 70, 997–1001 (1973).

    Article  ADS  CAS  Google Scholar 

  38. Willshaw, D. J. & Von der Malsburg, C. How patterned neural connections can be set up by self-organization. Proc. R. Soc. Lond. B 194, 431–445 (1976).

    Article  ADS  CAS  Google Scholar 

  39. Bear, M. F., Cooper, L. N. & Ebner, F. F. Aphysiological basis for a theory of synaptic modification. Science 237, 42–48 (1987).

    Article  ADS  CAS  Google Scholar 

  40. Miller, K. D., Keller, J. B. & Stryker, M. P. Ocular dominance column development: analysis and simulation. Science 245, 605–615 (1989).

    Article  ADS  CAS  Google Scholar 

  41. Constantine-Paton, M., Cline, H. T. & Debski, E. Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. Annu. Rev. Neurosci. 13, 129–154 (1990).

    Article  CAS  Google Scholar 

  42. Brown, T. H., Kairiss, E. W. & Keenan, C. L. Hebbian synapses: biophysical mechanisms and algorithms. Annu. Rev. Neurosci. 13, 475–511 (1990).

    Article  CAS  Google Scholar 

  43. Frégnac, Y., Burke, J. P., Smith, D. & Friedlander, M. J. Temporal covariance of pre- and postsynaptic activity regulates functional connectivity in the visual cortex. J. Neurophysiol. 71, 1403–1421 (1994).

    Article  Google Scholar 

  44. Mehta, M. R., Barnes, C. A. & McNaughton, B. L. Experience-dependent, asymmetric expansion of hippocampal place fields. Proc. Natl Acad. Sci. USA 94, 8918–8921 (1997).

    Article  ADS  CAS  Google Scholar 

  45. Gerstner, W. & Abbott, L. F. Learning navigational maps through potentiation and modulation of hippocampal place cells. J. Comp. Neurosci. 4, 79–94 (1997).

    Article  CAS  Google Scholar 

  46. Meister, M., Wong, R. O., Baylor, D. A. & Shatz, C. J. Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252, 939–943 (1991).

    Article  ADS  CAS  Google Scholar 

  47. Wong, R. O., Chernjavsky, A., Smith, S. J. & Shatz, C. J. Early functional neural networks in the developing retina. Nature 374, 716–718 (1995).

    Article  ADS  CAS  Google Scholar 

  48. Penn, A. A., Riquelme, P. A., Feller, M. B. & Shatz, C. J. Competition in retinogeniculate patterning driven by spontaneous activity. Science 279, 2108–2112 (1998).

    Article  ADS  CAS  Google Scholar 

  49. Colman, H., Nabekura, J. & Lichtman, J. W. Alterations in synaptic strength preceding axon withdrawal. Science 275, 356–361 (1997).

    Article  CAS  Google Scholar 

  50. Nieuwkoop, P. D. & Faber, J. Normal Table of Xenopus laevis2nd edn (North Holland, Amsterdam, (1967)).

    Google Scholar 

Download references

Acknowledgements

We thank G.-q. Bi, B. Berninger, Y. Dan, S. Mcfarlane and H. Cline for discussion and comments. This work was supported by grants from NIH, NSF and MRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mu-ming Poo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Tao, H., Holt, C. et al. A critical window for cooperation and competition among developing retinotectal synapses. Nature 395, 37–44 (1998). https://doi.org/10.1038/25665

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/25665

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing