Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Independent routes for Na transport across dog red cell membranes

Abstract

PARKER and Snow1 have shown that extracellular ATP produces an apparently nonspecific and reversible increase in the cation (Na+ and K+) permeability of dog red cells, as a result of which the cells swell gradually during suspension in an isosmolar physiological bathing medium containing ATP. This effect contrasts markedly with the usual dependence on cell volume of cation fluxes in this type of red cell2–6 which, unlike most mammalian erythrocytes, is close to ionic equilibrium with plasma6–7, and lacks an ouabain-sensitive ion pump8,9. Exogenous ATP was found to influence the surface properties of chick embryo fibroblasts10, and also cause volume changes and cation imbalances in ascites tumour cells11, and it has been suggested11 that ATP alters the passive permeability of the membrane to Na+ and K+ rather than the cation pumping mechanism per se. Effects of ATP on the membrane transport characteristics of various tissue culture cell lines have been studied12,13, and it has been proposed12 that the translocation of ATP itself may be linked with ion movement across membranes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Parker, J. C., and Snow, R. L., Am. J. Physiol., 223, 223–888 (1972).

    Google Scholar 

  2. Davson, H., J. Physiol., Lond., 101, 265 (1942).

    Article  CAS  Google Scholar 

  3. Hoffman, J. F., Am. J. Med., 41, 666 (1966).

    Article  CAS  Google Scholar 

  4. Romualdez, A., Sha'afi, R. I., Lange, Y., and Solomon, A. K. J. gen. Physiol., 60, 46 (1972).

    Article  CAS  Google Scholar 

  5. Elford, B. C., and Solomon, A. K., Biochim. biophys. Acta, 373, 253 (1974).

    Article  CAS  Google Scholar 

  6. Elford, B. C., J. Physiol., Lond., 246, 371 (1975).

    Article  CAS  Google Scholar 

  7. Berstein, R. E., Science, 120, 459 (1954).

    Article  ADS  Google Scholar 

  8. Chan, P. C., Calabrese, V., and Theil, L. S., Biochim. biophys. Acta, 79, 424 (1964).

    Article  CAS  Google Scholar 

  9. Miles, P. R., and Lee, P., J. Cell Physiol., 79, 367 (1972).

    Article  CAS  Google Scholar 

  10. Jones, B. M., Nature, 212, 362 (1966).

    Article  ADS  CAS  Google Scholar 

  11. Hempling, H. G., Stewart, C. C., and Gasic, G., J. Cell Physiol., 73, 133 (1969).

    Article  CAS  Google Scholar 

  12. Trams, E. G., Nature, 252, 480 (1974).

    Article  ADS  CAS  Google Scholar 

  13. Aiton, J. F., and Lamb, J. F., J. Physiol., Lond., 248, 14P (1975).

    CAS  PubMed  Google Scholar 

  14. Elford, B. C., and Solomon, A. K., Nature, 248, 522 (1974).

    Article  ADS  CAS  Google Scholar 

  15. Khan, M. M. T., and Martell, A. E., J. Am. chem. Soc., 88, 668 (1966).

    Article  CAS  Google Scholar 

  16. Caldwell, P. C., in Calcium and Cellular Function (edit. by Cuthbert, A. W.), (Macmillan, London, 1970).

    Google Scholar 

  17. Davson, H., and Reiner, J. M., J. cell comp. Physiol., 20, 325 (1942).

    Article  CAS  Google Scholar 

  18. Sha'afi, R., and Pascoe, E., J. gen Physiol., 61, 709 (1973).

    Article  CAS  Google Scholar 

  19. Hille, B., Progr. Biophys., 21, 3 (1970).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ELFORD, B. Independent routes for Na transport across dog red cell membranes. Nature 256, 580–582 (1975). https://doi.org/10.1038/256580a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/256580a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing