Letter | Published:

Effect of bromodeoxyuridine on redundancy of ribosomal RNA cistrons of Drosophila virilis

Subjects

Abstract

THERE have been numerous demonstrations that the thymidine analogue, 5-bromodeoxyuridine (BrdU), can affect the progress of cellular events in eukaryotes. It has been suggested that the incorporation of the base analogue changes the secondary structure of DNA and/or chromatin recognition sites1–3. Support for this view has come from studies which have shown a BrdU substitution effect on the physical properties of isolated chromatin4,5 and alterations in the patterns of RNA transcription6–9. In some instances, a correlation between the onset of DNA synthesis and the effect of BrdU has been observed1,3. In addition, several studies have shown that the drug can alter the process of DNA replication8,10,11. Thus, it has been argued that changes in the replication of DNA may precede or lead directly to the expression of BrdU sensitivity.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    O'Neill, M. C., and Stockdale, F. E., Devl Biol., 37, 117–132 (1974).

  2. 2

    Tomida, M., Koyama, H., and Ono, T., Biochim. biophys. Acta, 338, 352–363 (1974).

  3. 3

    Walther, B. T., Pictet, R. L., David, J. D., and Rutter, W. J., J. biol. Chem., 249, 1953–1964 (1974).

  4. 4

    David, J., Gordon, J. S., and Rutter, W. J., Proc. natn. Acad. Sci. U.S.A., 71, 2808–2812 (1974).

  5. 5

    Lapeyre, J.-N., and Bekhor, I., J. molec. Biol., 89, 137–162 (1974).

  6. 6

    Grady, L. J., and Campbell, W. P., Expl Cell Res., 87, 127–131 (1974).

  7. 7

    Hennig, W., and Meer, B., Nature new Biol., 233, 70–72 (1971).

  8. 8

    Kotzin, B. L., and Baker, R. F., J. Cell Biol., 55, 74–81 (1972).

  9. 9

    Preisler, H. D., Housman, D., Scher, W., and Friend, C., Proc. natn. Acad. Sci. U.S.A., 70, 2956–2959 (1973).

  10. 10

    Baker, R. F., and Case, S. T., Nature, 249, 350–352 (1974).

  11. 11

    Lykkesfeldt, A. E., and Andersen, H. A., J. Cell Biol., 62, 316–321 (1974).

  12. 12

    Ritossa, F., and Spiegelman, S., Proc. natn. Acad. Sci., U.S.A., 53, 737–745 (1965).

  13. 13

    Spear, B. B., and Gall, J. G., Proc. natn. Acad. Sci. U.S.A., 70, 1359–1363 (1973).

  14. 14

    Krider, H. M., and Plaut, W., J. Cell Sci., 11, 675–687 (1972); Krider, H. M., and Plaut, W., J. Cell. Sci., 11, 689–697 (1972).

  15. 15

    Mohan, J., and Ritossa, F. M., Devl Biol., 22, 495–512 (1970).

  16. 16

    Gall, J. G., Cohen, E. H., and Polan, M. L., Chromosoma, 33, 319–344 (1971).

  17. 17

    Gilbert, E. F., Pilot, H. C., Bruyer, H. J., Jr, and Cheung, A. L., Teratology, 7, 205–207 (1973).

  18. 18

    Rizki, T. M., Rizki, R. M., and Douthit, H. A., Biochem. Genet., 6, 83–97 (1972).

  19. 19

    Weber, L., thesis, Univ. Connecticut (1974).

  20. 20

    Brown, D. D., and Littna, E., J. molec. Biol., 8, 669–687 (1974).

  21. 21

    Sibatani, A., Molec. gen. Genet., 114, 177–180 (1972).

  22. 22

    Dickson, E., Boyd, J. B., and Laird, C. D., J. molec. Biol., 61, 615–627 (1971).

  23. 23

    Ritossa, F. M., Proc. natn. Acad. Sci. U.S.A., 60, 509–516 (1968).

  24. 24

    Tartof, K. D., Proc. natn. Acad. Sci. U.S.A., 71 (4) 1272–1276 (1974).

  25. 25

    Schwartz, S. A., and Kirsten, W. H., Proc. natn. Acad. Sci. U.S.A., 71, 3570–3574 (1974).

  26. 26

    Kissane, J. M., and Robins, E., J. biol. Chem., 233, 184–188 (1958).

Download references

Author information

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.

About this article

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.