Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interchange of adenyl and guanyl cyclases as an explanation for transformation of β- to α-adrenergic responses in the rat atrium

Abstract

STUDIES have indicated that the response of the heart1–5, and possibly other tissues6, to exogenous catecholamines changes from β-type to α-type in conditions of decreased metabolic activity, including lowering the temperature. Attempts to correlate this with changes in cyclic AMP metabolism which are thought to reflect β-adrenoceptor activity were unsuccessful7,8. We have therefore studied the effects of lowering the temperature on the intracellular levels of both cyclic AMP and cyclic GMP in the spontaneously beating rat atrium. Cyclic GMP concentrations seem to mediate α-adrenergic responses in a variety of systems9–12, and we therefore investigated whether its levels increased in conditions of increased α-adrenoceptor activity. Our results indicate that the same receptors that stimulate cyclic AMP synthesis at 37 °C, trigger the synthesis of cyclic GMP at a colder temperature (24 °C).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kunos, G., and Szentivanyi, M., Nature, 217, 1077–1078 (1968).

    Article  ADS  CAS  Google Scholar 

  2. Buckley, G. A., and Jordan, C. C., Br. J. Pharmac., 38, 394–398 (1970).

    Article  CAS  Google Scholar 

  3. Kunos, G., Yong, M. S., and Nickerson, M., Nature new Biol., 241, 119–120 (1974).

    Article  Google Scholar 

  4. Hari, M. N. E., Acta Pharmac. Toxic., 33, 273–279 (1973).

    Article  Google Scholar 

  5. Kunos, G., Vermes-Kunos, I., and Nickerson, M., Nature, 250, 779 (1974).

    Article  ADS  CAS  Google Scholar 

  6. Matheny, J. L., and Ahlquist, R. P., Archs int. Pharmacodyn., 209, 197–203 (1974).

    CAS  Google Scholar 

  7. Caron, M. G., and Lefkowitz, R. J., Nature, 249, 258–260 (1974).

    Article  ADS  CAS  Google Scholar 

  8. Benfey, B. G., Kunos, G., and Nickerson, M., Br. J. Pharmac., 51, 253–257 (1974).

    Article  CAS  Google Scholar 

  9. Schultz, G., Hardman, J. G., Schultz, K., Davis, J. W., and Sutherland, E. W., Proc. natn. Acad. Sci. U.S.A., 70, 1721–1725 (1973).

    Article  ADS  CAS  Google Scholar 

  10. Amer, M. S., Gastroenterology, 67, 333–337 (1974).

    CAS  PubMed  Google Scholar 

  11. Glass, D. B., White, J. G., and Goldberg, N. D., Fedn Proc., 33, 611 (1974).

    Google Scholar 

  12. Ball, J. H., et al., J. clin. Invest., 51, 2124–2132 (1972).

    Article  CAS  Google Scholar 

  13. Sobel, B. E., and Mayer, S. E., Circulation Res., 32, 407–414 (1973).

    Article  CAS  Google Scholar 

  14. Chenoweth, M. B., and Koelle, E. S., J. Lab. clin. Med., 31, 600–608 (1946).

    CAS  PubMed  Google Scholar 

  15. Murad, F., Manganiello, V., and Vaughan, M., Proc. natn. Acad. Sci. U.S.A., 68, 736–739 (1971).

    Article  ADS  CAS  Google Scholar 

  16. Gilman, A. G., Proc. natn. Acad. Sci. U.S.A., 67, 305–309 (1970).

    Article  ADS  CAS  Google Scholar 

  17. Steiner, A. L., Parker, C. W., and Kipnis, D. M., J. biol. Chem., 247, 1106–1113 (1972).

    CAS  Google Scholar 

  18. Amer, M. S., and McKinney, G. R., A. Rep. med. Chem., 9, 203–212 (1974).

    Google Scholar 

  19. Cuatrecasas, P., Biochem. Pharmac., 23, 2353–2361 (1974).

    Article  CAS  Google Scholar 

  20. Moran, N. C., Frontiers in Catecholamine Research, 291–294 (Pergamon, Oxford, 1973).

    Book  Google Scholar 

  21. Amer, M. S., and Kreighbaum, W. E., J. Pharm. Sci., 64, 1–37 (1975).

    Article  CAS  Google Scholar 

  22. George, W. J., Wilkerson, R. D., and Kadowitz, P. J., J. Pharmac. exp. Ther., 184, 228–235 (1973).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

AMER, M., BYRNE, J. Interchange of adenyl and guanyl cyclases as an explanation for transformation of β- to α-adrenergic responses in the rat atrium. Nature 256, 421–424 (1975). https://doi.org/10.1038/256421a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/256421a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing