Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Retinal resistance barriers and electrical lateral inhibition

Abstract

EXTRACELLULAR fields around active neural tissues are usually only a small fraction of the transmembrane voltages generating them, but this is not so in the arthropod compound eye. Light-evoked fields (the electroretinogram, ERG) can range over 10 mV amplitude1 and grow even larger near the receptor endings at the first synapse, the lamina (Fig. 1). The physical basis for such large fields is not understood although it has been suggested that there may be barriers of high resistance in the extracellular space2,3 across which current flow may generate large voltages. Direct measurements of extracellular resistance profiles in the insect eye reported here indicate that a barrier does exist. I also show the effect such a barrier must have on the retinal currents produced by light, which is to set up a system of electrical presynaptic inhibition on certain of the receptor terminals, acting through the extracellular space. When this neural circuit is defined in detail it can be shown that it specifically selects for inhibition only those neighbouring receptors with properties dissimilar to the excited elements. Such a system might be of general interest as a mechanism of inhibitory interaction, since it can act in a graded manner, needs no neural wiring to set it up, and no genetic programme to account for the selectivity its inhibition shows. The developmental problem of how a neurone can establish highly specific connections with follower cells4–6 and yet at the same time form a perhaps equally specific set of laterally-interacting connections with a quite different set of cells, is avoided with this particular mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hartline, H. K., Am. J. Physiol., 83, 466–483 (1928).

    Google Scholar 

  2. Burtt, E. T., and Catton, W. T., J. Insect Physiol., 10, 865–886 (1964).

    Article  Google Scholar 

  3. Heisenberg, M., J. exp. Biol., 55, 85–100 (1971).

    CAS  PubMed  Google Scholar 

  4. Braitenberg, V., Expl Brain Res., 3, 271–298 (1967).

    Article  CAS  Google Scholar 

  5. Horridge, G. A., and Meinertzhagen, I. A., Proc. R. Soc., B 175, 69–82 (1970).

    Article  ADS  CAS  Google Scholar 

  6. Macagno, E. R., Lopresti, V., and Levinthal, C., Proc. natn. Acad. Sci. U.S.A., 70, 57–61 (1973); ibid., 71, 1098–1102 (1974).

    Article  ADS  CAS  Google Scholar 

  7. Hagins, W. A., Penn, R. D., and Yoshikami, S., Biophys. J., 10, 380–412 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Penn, R. D., and Hagins, W. A., Nature, 223, 201 (1969).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Ogden, T. E., and Ito, H., J. Neurophysiol., 34, 367–373 (1971).

    Article  CAS  PubMed  Google Scholar 

  10. Ioannides, A. C., and Walcott, B., Z. vergl. Physiol., 71, 315–325 (1971).

    Article  Google Scholar 

  11. Shaw, S. R., J. Physiol., Lond., 220, 145–175 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zettler, F., and Järvilehto, M., J. comp. Physiol., 85, 89–104 (1973).

    Article  Google Scholar 

  13. Shaw, S. R., Symp. zool. Soc. Lond., 23, 135–163 (1968).

    Google Scholar 

  14. Horridge, G. A., Z. vergl. Physiol., 55, 207–224 (1967).

    Article  Google Scholar 

  15. Rushton, W. A. H., Proc. R. Soc., B 162, 20–46 (1965).

    Article  ADS  CAS  Google Scholar 

  16. Barlow, H. B., and Levick, W. R., J. Physiol., Lond., 200, 1–24 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shaw, S. R., Vision Res., 9, 1031–1040 (1969).

    Article  CAS  PubMed  Google Scholar 

  18. Zettler, F., and Järvilehto, M., Z. vergl. Physiol., 76, 233–244 (1972).

    Article  Google Scholar 

  19. Laughlin, S. B., J. comp. Physiol., 92, 357–375 (1974).

    Article  Google Scholar 

  20. Furukawa, T., Furshpan, E. J., J. Neurophysiol., 26, 140–175 (1963).

    Article  CAS  PubMed  Google Scholar 

  21. Faber, D. S., and Korn, H., Science, 179, 577–8 (1973).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SHAW, S. Retinal resistance barriers and electrical lateral inhibition. Nature 255, 480–483 (1975). https://doi.org/10.1038/255480a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/255480a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing