Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantitative test of a microscopic mechanism of high-temperature superconductivity

Abstract

One of the main challenges to theoretical attempts to understand the microscopic mechanism of high-transition-temperature (high- T c) superconductivity is to account quantitatively for the superconducting condensation energy, the energy by which the normal state differs from the superconducting state1,2,3,4,5,6. A microscopic model commonly used to describe the superconducting copper oxides, the t - J model7, is thought to capture the essential physics of the phenomenon: the interplay between the electrons' kinetic energy and their antiferromagnetic exchange interaction. Within the t - J model the condensation energy can be related to the change in the dynamical spin structure between the superconducting and the normal states8. Here we propose a microscopic mechanism for the condensation energy of high- T c superconductors. Within this mechanism, the appearance of a resonance in the superconducting state9,10,11,12,13 enables the antiferromagnetic exchange energy in this state to be lowered relative to the normal state. We show that the intensity of the resonant neutron-scattering peak observed previously in YBa2Cu3O7 when it undergoes the transition to the superconducting state14,15,16 is in quantitative agreement with the condensation energy of these materials2,3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shrieffer, J. R. Theory of Superconductivity(Addison-Wesley, Reading, MA, 1964).

    Google Scholar 

  2. Loram, J. et al. The electronic specific heat of YBa 2 (Cu 1− x Zn x)3 O 7 from 1.6 to 300 K. Physica C 171, 243–256 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Loram, J. et al. Electronic specific heat of YBa 2 Cu 3 O 6+ x et al. from 1.8 to 300 K. J. Supercond. 7, 243–249 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Chester, G. V. Difference between normal and superconducting states of a metal. Phys. Rev. 103, 1693–1699 (1956).

    Article  ADS  CAS  Google Scholar 

  5. Chakravarty, S. et al. Interlayer tunneling and gap anisotropy in high temperature superconductors. Science 261, 337–340 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Leggett, A. Where is the energy saved in cuprate superconductivity?Preprint, Univ. Illinois at Urbana-Champaign((1998)).

  7. Zhang, F. C. & Rice, T. M. Effective Hamiltonian for the superconducting copper-oxides. Phys. Rev. B 37, 3759–3763 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Scalapino, D. J. & White, S. The superconducting condensation energy and an antiferromagnetic exchange based pairing mechanism.Preprint cond-mat/9805075 at 〈http://xxx.lanl.gov〉 ((1998)).

  9. Demler, E. & Zhang, S. C. Theory of resonance neutron scattering of high T csuperconductors. Phys. Rev. Lett. 76, 4126–4129 (1995).

    Article  ADS  Google Scholar 

  10. Meixner, S. et al. Finite size studies on the SO (5) symmetry of Hubbard model. Phys. Rev. Lett. 79, 4902–4905 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Eder, R., Hanke, W. & Zhang, S. C. Numerical evidence for SO (5) symmetry and superspin multiplets in the two dimensional t - J model. Phys. Rev. B 57, 13781–13789 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Demler, E., Kohno, H. & Zhang, S. C. πexcitation of the t - J model. Phys. Rev. B 58, 5719–5730 ((1998)).

    Article  ADS  CAS  Google Scholar 

  13. Zhang, S. C. Aunified theory based on SO (5) symmetry of superconductivity and antiferro-magnetism. Science 275, 1089–1096 (1997).

    Article  MathSciNet  CAS  Google Scholar 

  14. Mook, H. et al. Polarized neutron determination of the magnetic excitation in YBa 2 Cu 3 O 7. Phys. Rev. Lett. 70, 3490–3493 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Fong, H. F. et al. Phonon and magnetic neutron scattering at 41 meV in YBa 2 Cu 3 O 7. Phys. Rev. Lett. 75, 316–319 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Fong, H. F. et al. Polarized and unpolarized neutron scattering study of the dynamic spin susceptibility in Yba 2 Cu 3 O 7. Phys. Rev. B 54, 6708–6720 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Shastry, S. & Sutherland, B. Twisted boundary conditions and effective mass in Heisenberg-Ising and Hubbard rings. Phys. Rev. Lett. 65, 243–246 (1990).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  18. Scalapino, D., White, S. & Zhang, S. C. Superfluid density and the Drude weight of the Hubbard model. Phys. Rev. Lett. 68, 2830–2833 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Chakravarty, S. Do electrons change their c-axis kinetic energy upon entering the superconducting state?Preprint cond-mat/9801025 at 〈http://xxx.lanl.gov〉 ((1998)).

  20. Timusk, T. & Statt, B. The pseudogap in high temperature superconductors: an experimental survey. Rep. Prog. Phys.(in the press).

  21. Reznik, D. et al. Direct observation of optical magnons in YBa 2 Cu 3 O 6.2. Phys. Rev. B 53, R14741–R14744 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Hayden, S. et al. High frequency spin waves in YBa 2 Cu 3 O 6.15. Phys. Rev. B 54, R6905–R6908 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Scalapino, D. The case for d x 2 − y 2 pairing in the cuprate superconductors. Phys. Rep. 250, 329–365 (1995).

    Article  ADS  CAS  Google Scholar 

  24. Pines, D. Understanding high-temperature superconductivity, a progress report. Physica B 199–200, 300–309 (1994).

    Article  ADS  Google Scholar 

  25. Shrieffer, J. R. Ward's identity and the suppression of spin fluctuation superconductivity. J. Low Temp. Phys. 99, 397–402 (1995).

    Article  ADS  Google Scholar 

  26. Bulut, N. & Scalapino, D. Neutron scattering from a collective spin fluctuation mode in CuO 2 bilayer. Phys. Rev. B 53, 5149–5152 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Morr, D. K. & Pines, D. The resonance peak in cuprate superconductors.Preprint cond-mat/9805107 at 〈http://xxx.lanl.gov〉 ((1998)).

  28. Hayden, S. et al. Absolute measurements of the high-frequency magnetic dynamics in high-Tc superconductors. Physica B 241–243, 765–772 (1998).

    ADS  Google Scholar 

  29. Fong, H. F. et al. Superconductivity-induced anomalies in the spin excitation spectra of underdoped YBa 2 Cu 3 O 6+ x. Phys. Rev. Lett. 78, 713–716 (1997).

    Article  ADS  CAS  Google Scholar 

  30. Loram, J. W. et al. Superconducting and normal state energy gaps in Y 0.8 Ca 0.2 Ba 2 Cu 3 O 7−δ from the electronic specific specific heat. Physica C 282–287, 1405–1406 (1997).

    Article  ADS  Google Scholar 

  31. Dai, P. et al. Magnetic dynamics in underdoped YBa 2 Cu 3 O 7− x: direct observation of a superconducting gap. Phys. Rev. Lett. 77, 5425–5428 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Demler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demler, E., Zhang, SC. Quantitative test of a microscopic mechanism of high-temperature superconductivity. Nature 396, 733–735 (1998). https://doi.org/10.1038/25482

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/25482

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing