Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rapid postsynthetic destruction of unstable haemoglobin Bushwick

Abstract

MOST structural variants of human haemoglobin occur in smaller amounts than HbA in the peripheral blood of heterozygous subjects. Abnormal haemoglobins with mutations in the β chain usually comprise 35–45% of the haemoglobin in haemolysates. In contrast, haemoglobins with abnormal α chains generally amount to only 20–25% of the total haemoglobin. This difference in the proportion of α and β chain variants is thought to reflect the fact that in some populations there are two α loci and only one out of four α globin genes is affected in a heterozygote, whereas one out of two β globin alleles is abnormal in a subject with a β varient1,2. Certain unstable haemoglobins with critical alterations in β-chain structure also constitute a much smaller proportion of the total circulating haemoglobin than HbA. The low concentration of these abnormal haemoglobins is the result of accelerated preferential destruction3–7. We report here a new unstable β variant, Hb Bushwick, which was detected in an intact form constituting only 1–2% of the total circulating haemoglobin. Evidence was found for rapid postsynthetic destruction of the abnormal β chain. In spite of this accelerated loss of the product of one of the two β alleles, the affected erythrocytes contained normal amounts of haemoglobin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lehmann, H., and Carrell, R. W., Br. Med. J., 4, 748–750 (1968).

    Article  CAS  Google Scholar 

  2. Hollan, S. R., et al., Nature, 235, 47–50 (1972).

    Article  ADS  CAS  Google Scholar 

  3. Rieder, R. F., Zinkham, W. H., and Holtzman, N. A., Am. J. Med., 39, 4–20 (1965).

    Article  CAS  Google Scholar 

  4. Huehns, E. R., Bull. Soc. Chim. biol., 52, 1131–1146 (1971).

    Google Scholar 

  5. Cohen Solal, M., and Labie, D., Biochim. biophys. Acta, 295, 67–76 (1973).

    Article  CAS  Google Scholar 

  6. Rieder, R. F., J. clin. Invest., 50, 388–400 (1971).

    Article  CAS  Google Scholar 

  7. Honig, G. R., Mason, R. G., Vida, L. N., and Shamsuddin, M., Blood, 43, 657–664 (1974).

    CAS  PubMed  Google Scholar 

  8. Rieder, R. F., J. clin. Invest., 49, 2369–2376 (1970).

    Article  CAS  Google Scholar 

  9. Weatherall, D. J., and Clegg, J. B., The Thalassaemia Syndromes (Blackwell, Oxford, 1972).

    Google Scholar 

  10. Rieder, R. F., and James, G. W., III, J. clin. Invest., 54, 948–956 (1974).

    Article  CAS  Google Scholar 

  11. Vernon, L. P., and Kamen, M. D., J. biol. Chem., 211, 643–662 (1954).

    CAS  PubMed  Google Scholar 

  12. Clegg, J. B., Naughton, M. A., and Weatherall, D. J., J. molec. Biol., 19, 91–108 (1966).

    Article  CAS  Google Scholar 

  13. Perutz, M. F., Kendrew, J. C., and Watson, H. C., J. molec. Biol., 13, 669–678 (1965).

    Article  CAS  Google Scholar 

  14. Dayhoff, M. O., Ed. Atlas of Protein Sequence and Structure, 5 (National Biomedical Research Foundation, Washington, DC, 1972).

  15. White, J. M., Brain, M. C., Lorkin, P. A., Lehmann, H., and Smith, M., Nature, 225, 939–941 (1970).

    Article  ADS  CAS  Google Scholar 

  16. Sathiapalan, R., and Robinson, M. G., Br. J. Haemat., 15, 579–587 (1968).

    Article  CAS  Google Scholar 

  17. Schneider, R. G., Veda, S., Alperin, J. B., Brimhall, B., and Jones, R. T., New Engl. J. Med., 280, 739–745 (1969).

    Article  CAS  Google Scholar 

  18. Svensson, B., and Strand, L., Scand. J. Haemat., 4, 241–248 (1967).

    Article  CAS  Google Scholar 

  19. Hollender, A., Lorkin, P. A., Lehmann, H., and Svensson, B., Nature, 222, 953–955 (1969)

    Article  ADS  CAS  Google Scholar 

  20. Honig, G. R., et al., J. clin. Invest., 52, 1746–1755 (1973).

    Article  CAS  Google Scholar 

  21. Pedersen, P. R., et al., Blood, 42, 771–781 (1973).

    CAS  PubMed  Google Scholar 

  22. Wajcman, H., Pagnier, J., Labie, D., and Boivin, P., Nouv. Rev. Fr. Hematol., 11, 317–330 (1971).

    CAS  PubMed  Google Scholar 

  23. Luan Eng, L.-I., et al., J. med. Genet., 9, 340–343 (1972).

    Article  Google Scholar 

  24. Kacian, D. L., et al., Proc. natn. Acad. Sci. U.S.A., 70, 1886–1890 (1973).

    Article  ADS  CAS  Google Scholar 

  25. Fuhr, J., Natta, C., Marks, P. A., and Bank, A., Nature, 224, 1305–1307 (1969).

    Article  ADS  CAS  Google Scholar 

  26. Conconi, F., and del Senno, L., Ann. N.Y. Acad. Sci., 232, 54–64 (1974).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

RIEDER, R., WOLF, D., CLEGG, J. et al. Rapid postsynthetic destruction of unstable haemoglobin Bushwick. Nature 254, 725–727 (1975). https://doi.org/10.1038/254725a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/254725a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing