Letter | Published:

Inhibition and disinhibition of direction-specific mechanisms in human vision

Abstract

MOTION-SENSITIVE mechanisms in human vision are selective for direction of stimulus movement. Psychophysical experiments reveal direction-specific channels which can be selectively desensitised or adapted1,2. At threshold these direction-specific mechanisms operate independently; they have little or no sensitivity for the opposite direction of motion3–6. Independence at threshold does not, of course, preclude interaction at suprathreshold stimulus levels. Indeed, inhibition has been found above threshold between otherwise independent spatial frequency-specific mechanisms7,8, orientation-selective mechanisms9,10, and binocular disparity-specific mechanisms11. We report here comparable measurements of inhibition between direction-specific channels. We also show that in appropriate conditions the inhibition can itself be reduced or eliminated, a disinhibition effect.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Sekuler, R., and Ganz, L., Science, 139, 419–420 (1963).

  2. 2

    Pantle, A., and Sekuler, R., Vision Res., 9, 397–406 (1969).

  3. 3

    Levinson, E., and Sekuler, R., J. opt. Soc. Am., 63, 1296A (1973).

  4. 4

    Sekuler, R., and Levinson, E., Psychologia Kyoto, 17, 38–49 (1974).

  5. 5

    Levinson, E., and Sekuler, R., J. Physiol., Lond., (in the press).

  6. 6

    Levinson, E., thesis, Dalhousie Univ., Nova Scotia (1975).

  7. 7

    Tolhurst, D. J., J. Physiol., Lond., 226, 231–248 (1972).

  8. 8

    Stecher, S., Sigel, C., and Lange, R. V., Vision Res., 13, 2527–2531 (1973).

  9. 9

    Blakemore, C., Carpenter, R. H. S., and Georgeson, M. A., Nature, 228, 37–39 (1970).

  10. 10

    Carpenter, R. H. S., and Blakemore, C., Expl Brain Res., 18, 287–303 (1973).

  11. 11

    Richards, W., Vision Res., 12, 1113–1124 (1972).

  12. 12

    Dealy, R. S., and Tolhurst, D. J., J. Physiol., Lond., 241, 261–270 (1974).

  13. 13

    Maffei, L., Fiorentini, A., and Bisti, S., Science, 182, 1036–1038 (1973).

  14. 14

    Campbell, F. W., and Green, D. G., J. Physiol., Lond., 181, 576–593 (1965).

  15. 15

    Enroth-Cugell, C., and Robson, J. G., J. Physiol., Lond., 187, 517–552 (1966).

  16. 16

    Pettigrew, J. D., Nikara, T., and Bishop, P. O., Expl Brain Res., 6, 373–390 (1968).

  17. 17

    Henry, G. H., Bishop, P. O., and Dreher, B., Vision Res., 14, 767–777 (1974).

  18. 18

    Hubel, D. H., and Wiesel, T. N., J. Physiol., Lond., 195, 215–233 (1968).

  19. 19

    Poggio, G. F., Invest. Ophthal., 11, 368–376 (1972).

  20. 20

    Wurtz, R. H., J. Neurophysiol., 32, 727–742 (1969).

  21. 21

    Henry, G. H., and Bishop, P. O., Contrib. Sens. Physiol., 5, 1–46 (1971).

  22. 22

    Pettigrew, J. D., and Daniels, J. D., Science, 182, 81–83 (1973).

  23. 23

    Rose, D., and Blakemore, C., Nature, 249, 375–377 (1974).

  24. 24

    Benevento, L. A., Creutzfeldt, O. D., and Kuhnt, U., Nature, new Biol. 238, 124–126 (1972).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.