Letter | Published:

Lateral compressibility and penetration into phospholipid monolayers and bilayer membranes

Naturevolume 254pages154156 (1975) | Download Citation



THE phospholipid bilayer1 in certain biological membranes is maintained so that the range of temperature over which the gel-to-liquid crystal transition occurs includes the environmental temperature2. As a result, clusters of phospholipid molecules in crystalline and liquid-crystalline states1 coexist in the membrane and the isothermal lateral compressibility of the membrane lipids is enhanced3. Any increase in compressibility should facilitate insertion of foreign molecules into the bilayer thereby affecting transport across the membrane. Indeed, there is evidence that transport of ions4,5 and sugars3, and penetration of an enzyme6 is increased when the chain-melting transition of the lipids occurs. The lateral compressibility of phospholipid bilayers has not been measured, however, and there is no direct evidence for an increase in compressibility at the point where the gel-to-liquid crystal phase transition occurs. In order to measure lateral compressibility, compression solely in the plane of the bilayer is required. Such directed compression of bilayers will be difficult but it can be readily achieved with monolayers at the air–water interface. Since the molecular packing in such monolayers of phospholipids is equivalent to that in bilayers dispersed in excess water1,7, this model system is particularly convenient for exploring the role of lateral compressibility. Here we show (1) how the compressibility of lecithin mono-layers varies with packing density and changes at the chain-melting transition, and (2) how penetration of a hydrophobic protein is dependent on the compressibility.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Phillips, M. C., Prog. Surface Membrane Sci., 5, 139–221 (1972).

  2. 2

    Melchior, D. L., Morowitz, H. J., Sturtevant, J. M., and Tsong, T. Y., Biochim. biophys. Acta, 219, 114–122 (1970).

  3. 3

    Linden, C. D., Wright, K. L., McConnell, H. M., and Fox, C. F., Proc. natn. Acad. Sci. U.S.A., 70, 2271–2275 (1973).

  4. 4

    Papahadjopoulos, D., Jacobson, K., Nir, S., and Isac, T., Biochim. biophys. Acta, 311, 330–348 (1973).

  5. 5

    Wu, S. H. W., and McConnell, H. M., Biochem. biophys. Res. Commun., 55, 484–491 (1973).

  6. 6

    Op Den Kamp, J. A. F., De Gier, J., and Van Deenen, L. L. M., Biochim. biophys. Acta, 345, 253–256 (1974).

  7. 7

    Phillips, M. C., and Chapman, D., Biochim. biophys. Acta, 163, 301–313 (1968).

  8. 8

    Paltauf, F., Hauser, H., and Phillips, M. C., Biochim. biophys. Acta, 249, 539–547 (1971).

  9. 9

    Phillips, M. C., Evans, M. T. A., and Hauser, H., Proc. sixth int. Congress Surface Activity, 2, 381–391 (Carl Hanser, Munich, 1973).

  10. 10

    Davis, M. A. F., Hauser, H., Leslie, R. B., and Phillips, M. C., Biochim. biophys. Acta, 317, 214–218 (1973).

  11. 11

    Adams, D. J., Evans, M. T. A., Mitchell, J. R., Phillips, M. C., and Rees, P. M., J. Polymer Sci., C 34, 167–179 (1971).

  12. 12

    Dervichian, D. G., J. chem. Phys., 7, 931–948 (1939).

  13. 13

    Mayer, J. E., and Streeter, S. F., J. chem. Phys., 7, 1019–1025 (1939).

  14. 14

    Harkins, W. D., Young, J. F., and Boyd, G. E., J. chem. Phys., 8, 954–965 (1940).

  15. 15

    Joly, M., J. Colloid Sci., 5, 49–70 (1950).

  16. 16

    Harkins, W. D., in Physical Chemistry of Surface Films, 135–138 (Reinhold, New York, 1952).

  17. 17

    Gregg, S. J., in The Surface Chemistry of Solids, first ed., 80–89 (Chapman and Hall, London, 1951).

  18. 18

    Gaines, G. L., in Insoluble Monolayers at Liquid-Gas Interfaces, 156–188 (Interscience, New York, 1966).

  19. 19

    Stanley, H. E., in Introduction to Phase Transitions and Critical Phenomena, 96–98 (Clarendon, Oxford, 1971).

  20. 20

    Blank, M., J. phys. Chem., 66, 1911–1918 (1962).

  21. 21

    Rosano, H. L., and La Mer, V. K., J. phys. Chem., 60, 348–353 (1956).

  22. 22

    Colacicco, G., Lipids, 5, 636–649 (1970).

  23. 23

    Dawson, R. M. C., and Quinn, P. J., Adv. exp. Med. Biol., 14, 1–17 (1971).

  24. 24

    Phillips, M. C., Evans, M. T. A., and Hauser, H., Adv. Chem. (in the press).

  25. 25

    Papahadjopoulos, D., Cowden, M., and Kimelberg, H., Biochim. biophys. Acta, 330, 8–26 (1973).

Download references

Author information


  1. Biosciences Division, Unilever Research Laboratory, The Frythe, Welwyn, Hertfordshire, UK

    • M. C. PHILLIPS
    • , D. E. GRAHAM
    •  & H. HAUSER


  1. Search for M. C. PHILLIPS in:

  2. Search for D. E. GRAHAM in:

  3. Search for H. HAUSER in:

About this article

Publication history


Issue Date



Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.