Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Function of peptide antibiotics in producer organisms

Abstract

PEPTIDE antibiotics in the producer organisms have been ascribed a wide variety of roles, ranging from evolutionary relics and waste products to elevated control in metabolism (see refs 1 and 2). No hypothesis, however, has yet found general acceptance. A frequent suggestion is that these antibiotics may have an important regulatory function during the sporulation process of the producer cells3,4. We have recently reported, however, the existence of a bacitracin-negative mutant of Bacillus licheniformis which sporulates normally5, thus ruling out a direct role for the peptide antibiotic in the formation of spores in this species. To find out whether this mutant is a true non-producer of bacitracin or not, we have compared the bacitracin synthetase complex in this mutant with that of the bacitracin-producing mother strain B. licheniformis AL. This suggests that the mutant is not able to produce any bacitracin as a result of a defective enzyme complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hanson, R. S., Peterson, J. A., and Yousten, A. A., A. Rev. Microbiol., 24, 53–90 (1970).

    Article  CAS  Google Scholar 

  2. Weinberg, E. D., Adv. Microbiol. Physiol., 4, 1–44 (1970).

    CAS  Google Scholar 

  3. Sarkar, N., and Paulus, H., Nature new Biol., 239, 228–230 (1972).

    Article  CAS  Google Scholar 

  4. Sadoff, H. L., in Spores (edit. by Halvorson, H. C., Hanson, R., and Campbell, L. L.), 5, 157–166 (Am. Soc. Microbiol., Washington, 1972).

    Google Scholar 

  5. Haavik, H. I., and Thomassen, S., J. gen. Microbiol., 76, 451–454 (1973).

    Article  CAS  Google Scholar 

  6. Ishihara, H., Sasaki, T., and Shimura, K., Biochim. biophys. Acta, 166, 496–504 (1968).

    Article  CAS  Google Scholar 

  7. Simlot, M. M., Pfaender, P., and Specht, D., FEBS Lett., 35, 231–235 (1973).

    Article  CAS  Google Scholar 

  8. Fröyshov, Ø., and Laland, S. G., Eur. J. Biochem., 46, 235–242 (1974).

    Article  Google Scholar 

  9. Laland, S. G., and Zimmer, T. -L., Essays Biochem., 9, 31–57 (1973).

    CAS  PubMed  Google Scholar 

  10. Fröyshov, O., FEBS Lett., 44, 75–78 (1974).

    Article  Google Scholar 

  11. Ray, B., and Bose, S. K., J. gen. appl. Microbiol., 17, 491–498 (1971).

    Article  CAS  Google Scholar 

  12. Kambe, M., Imae, Y., and Kurahashi, K., J. Biochem., 75, 481–493 (1974).

    Article  CAS  Google Scholar 

  13. Haavik, H. I., J. gen. Microbiol., 81, 383–390 (1974).

    Article  CAS  Google Scholar 

  14. Haavik, H. I., J. gen. Microbiol., 84, 321–326 (1974).

    Article  CAS  Google Scholar 

  15. Krogvik, R. thesis, Univ. Oslo, (1973).

  16. Emilianowicz-Czerska, W., Szczepankowska, M., Niemczyk, H., and Wolkowicz, M., Acta Microbiol. Pol., 5, 29–34 (1973).

    CAS  Google Scholar 

  17. Pirt, S. J., and Righelato, R. C., Appl. Microbiol., 15, 1284–1290 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Oberzill, W., and Matsche, N. Second Symp. Techn. Microbiol., Berlin, 213–219 (1970).

  19. Blanch, H. W., and Rogers, P. L., Biotechnol. & Bioeng., 13, 843–864 (1971).

    Article  CAS  Google Scholar 

  20. Eisenstadt, E., Fisher, S., Der, C. -L., and Silver, S., J. Bact., 113, 1363–1372 (1973).

    CAS  PubMed  Google Scholar 

  21. Fisher, S., Buxbaum, L., Toth, K., Eisenstadt, E., and Silver, S., J. Bact., 113, 1373–1380 (1973).

    CAS  PubMed  Google Scholar 

  22. Bodanszky, M., and Perlman, D., Science, 163, 352–358 (1969).

    Article  ADS  CAS  Google Scholar 

  23. Maier, W., and Gröger, D., Pharmazie, 8, 491–505 (1972).

    Google Scholar 

  24. Weinberg, E. D., Bact. Rev., 21, 46–68 (1957).

    CAS  PubMed  Google Scholar 

  25. Garbutt, J. T., Morehouse, A. L., and Hanson, A. M., J. Agric. Fd. Chem. 9, 285–289 (1961).

    Article  CAS  Google Scholar 

  26. MacDonald, R. I., MacDonald, R. C., and Cornell, N. W., Biochemistry, 13, 4018–4024 (1974).

    Article  CAS  Google Scholar 

  27. Adler, R. H., and Snoke, J. E., J. Bact., 83, 1315–1317 (1962).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HAAVIK, H., FROYSHOV, Ø. Function of peptide antibiotics in producer organisms. Nature 254, 79–82 (1975). https://doi.org/10.1038/254079a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/254079a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing